Abstract:
The present invention relates to a preparing method of a polyolefin resin mono chip including: forming a thermoplastic resin composite by impregnating a fiber reinforcing agent having a length of 5 mm to 20 mm into a molten mixture including a propylene homopolymer of which a molecular weight distribution is 3 to 6, and a colorant, wherein a cooling speed at room temperature of the thermoplastic resin composite is 19° C./min or more.In addition, the present invention relates to a polyolefin resin mono chip including: a thermoplastic resin composite including a polymer substrate including a propylene homopolymer of which a molecular weight distribution is 3 to 6, and a colorant; and a fiber reinforcing agent having a length of 5 mm to 20 mm and impregnated into the polymer substrate, wherein an impact strength measured according to ASTM D256 is 200 J/m or more.
Abstract:
Adding a compatible high melt flow rate (MFR), low melt viscosity, hydrogenated styrene block copolymer to amorphous poly alpha-olefins (APAOs) results in adhesives that show acceptably high elongation and tensile strength, and which, when applied by different hot melt application methods onto elastic strands, result in personal hygiene article components that perform comparably to such components assembled using just styrene block copolymer components formulated with compatible tackifiers, processing oils and other additives.
Abstract:
The present invention relates to PBS- and silica-based composites, said composites having a high swelling ability. It also relates to a method of preparing said composites, a method of swelling said composites and films obtained by swelling said composites.
Abstract:
The present invention is to provide a thermoplastic resin composition capable of providing a molded article that is excellent in capability of shielding millimeter waves. A thermoplastic resin composition for a molded article having a capability of shielding millimeter waves, containing (A) a thermoplastic resin and (B) carbon long fibers having a fiber length of from 3 to 30 mm in an amount of from 0.5 to 5% by mass. A molded article obtained from the composition is excellent in capability of shielding millimeter waves and can be used as a protective member for a transmitting and receiving antenna of a millimeter wave radar.
Abstract:
A method of manufacturing a resin molded article includes a step of preparing a resin powder having low dust generation property by adding a liquid paraffin to a thermosetting resin, and a step of obtaining a resin molded article by heating and kneading the resin powder having low dust generation property, in which the step of preparing the resin powder having low dust generation property includes a step in which the thermosetting resin is melted and the liquid paraffin is added to the melted thermosetting resin to be stirred and mixed.
Abstract:
A continuous process for manufacturing a blended polymer includes mixing a native starch, a polyolefin, and a compatibilizer; and forming the blended polymer from the resulting mixture using an extruder. The process can also include mixing the native starch, the polyolefin, and the compatibilizer in the extruder. The polyolefin can be a petroleum- or bio-based polyethylene, and the compatibilizer can be a maleic anhydride grafted polyolefin. The process can further include mixing a processing aid such as glycerin, and forming the blended polymer into a film.
Abstract:
Process for the manufacture of a rubber composition comprising various constituents, such as base elastomers, reinforcing fillers, additives and a vulcanization system, during which the following stages are carried out: A—using a continuous mixing device, a starting rubber composition comprising the reinforcing fillers and optionally other components, with the exception of the crosslinking system, is produced, the operating parameters for the continuous mixing device being chosen so that: a—the residence time of the elastomer in the mixing chamber is between 20 and 60 seconds, b—the specific energy conferred on the rubber composition is between 2000 joules/gram and 5000 joules/gram, B—at the outlet for the starting rubber composition from the mixing chamber, the temperature of the said starting rubber composition is lowered to a temperature of less than 140° C. in less than 5 minutes.
Abstract:
Compositions comprising a continuous phase of at least one polypropylene; within the range of from 5 wt % to 50 wt % of a mineral hydroxide filler by weight of the composition, having an aspect ratio within the range of from 5 or 6 or 8 to 20 or 40 or 100 or 200 or 800 or 1000; and within the range of from 5 wt % to 40 wt % of a olefin block-containing copolymer by weight of the composition. Also described is a method of forming the compositions comprising combining the components as “masterbatches” or as neat ingredients, or some combination thereof.
Abstract:
The invention relates to a method for producing a dispersion of nanoscale dicarboxylic acid salts, to the use of these dispersions for producing a compound, and to the use for producing films. The invention further relates to the use of the compounds for producing films.
Abstract:
Process for the manufacture of a self-sealing elastomer composition comprising at least one diene elastomer, one hydrocarbon resin with a given softening temperature and one liquid plasticizing agent, characterized in that it comprises the following successive stages: (a) incorporating the hydrocarbon resin in the diene elastomer by kneading these components in a mixer at a temperature or up to a temperature referred to as “hot compounding” temperature greater than the softening temperature of the hydrocarbon resin, in order to obtain a masterbatch; (b) incorporating the liquid plasticizing agent in the masterbatch by kneading the combined mixture in the same mixer or in a different mixer, in order to obtain the self-sealing composition; and (c) forming the said self-sealing composition dimensionally.