Abstract:
In a digital radio communication system in which information is transmitted and received in time slots and some bits of each received audio frame is interleaved over at least two time slots and other bits in each audio frame at are non-interleaved, bad received audio frames are detected by detecting possible bit errors in a channel encoded non-interleaved bit sequence in each received time slot. If bit errors have been detected in this bit sequence a bad received frame is indicated.
Abstract:
An error detector circuit (300) for a discrete receiver indicates bad frames of binary information signals which contain distorted bits of data in numbers so great as to prevent a convolutional decoder (738) from generating, accurately, a decoded signal. A variable threshold generator (440) generates a variable threshold level according to the signal quality estimate for the received signal. When bit errors are detected in numbers beyond the variable threshold or when a first preselected value of the signal quality of a received signal combined with the detected number of bit errors forms a signal beyond a second preselected value, a bad frame is indicated.
Abstract:
An error detection system for a discrete receiver. The error detection system indicates bad frames of binary information signals which contain distorted bits in densities so great as to cause a convolutional decoder to generate an incorrect, decoded signal. A signal decoded by a convolutional decoder is re-encoded by an encoder, and the re-encoded signal is compared with the signal received by the receiver. When portions of the re-encoded signal differ too greatly from the actual, received signal, a bad frame indication is generated.
Abstract:
Methods, systems, and devices are described for identifying and mitigating in-device coexistence interference for multicarrier systems implementing soft combining decoding techniques. In some aspects, the described techniques include identifying time-frequency resources of a received signal subject to coexistence interference at a transceiver of a wireless device. The time-frequency resources may include, for example, symbols, slots, code-blocks, sub-frames, subcarriers, etc. Resource-specific mitigation may then be applied to the identified resources, for example, including skipping or nulling the interfered resources in the time domain, frequency domain, or both. In some aspects, the resource-specific mitigation may be performed at the soft-combining stage of the decoding process, such as by skipping or nulling one or more log likelihood ratio (LLR) instances that correspond to the interfered resource(s).
Abstract:
A system includes a transmitting line replaceable unit (TLRU) configured to receive messages including instructions for avionics receiving line replaceable units (RLRUs). The system further includes a memory configured to store validation data including a set of expected messages. A monitor is further included and is configured to monitor messages received at the TLRU and further configured to determine whether received messages are valid based on at least a portion of the set of expected messages stored in the memory. A plurality of RLRUs are further included and configured to receive message from the TLRU and to execute the instructions included in the received messages.
Abstract:
Embodiments of the present invention provide a data transmission apparatus and method. The data transmission apparatus in the present invention includes: a preprocessing module, configured to, if data is received within a preset period of time, record a link quality indication value LQI corresponding to the data, and perform incremental processing by adding 1 to a count value, where the count value is used to count a quantity of pieces of received data; a processing module, configured to, if it is learned by means of comparison that the count value is not less than a quantity N of pieces of data allowed to be transmitted in a current period, calculate an average value LQI of link quality indication values corresponding to all data received within the current period, where the processing module is further configured to compare the average value LQI with a threshold to determine a quantity of pieces of data allowed to be transmitted in a next period; and a reply module, configured to reply with a periodicity acknowledgment frame, where the periodicity acknowledgment frame carries the quantity of pieces of data allowed to be transmitted in the next period. In the embodiments of the present invention, the quantity of pieces of data allowed to be transmitted in the next period can be adaptively adjusted to form a real-time channel detection mechanism.
Abstract:
The present disclosure describes a system, method, and computer program product embodiments for processing an A-MPSDU frame structure. An example system can include an interface circuit to combine a plurality of media access control (MAC) headers corresponding to a plurality of media access control service data units (MSDUs) into an aggregated MAC header. The aggregated MAC header can include length information for each of the MSDUs. The interface circuit can also insert the aggregated MAC header into a frame and transmit the frame using an antenna.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Methods and apparatuses are provided for a data reception method of a terminal in a mobile communication system. Downlink control information (DCI) is received from a base station. It is determined determining whether a transport block size (TBS) of data transmitted by the base station is less than or equal to a predetermined value based on the DCI. The data is decoded, when the TBS is less than or equal to the predetermined value.
Abstract:
Disclosed herein is a receiving apparatus, for example for detecting a signal based on the DVB-T2 standard. The apparatus includes a first correlation value computation section for computing a first correlation value between two sections of a received signal, an operation section for performing an Fourier transform of a the received signal, a second correlation value computation section for computing a second correlation value between a sequence of subcarriers of the received signal, a decoding section for computing third correlation values between data associated with a second correlation value above a threshold and a plurality of predefined data items thereby decoding known data having a maximum value of said third correlation values, and a determination section for determining whether the maximum values of said third correlation values is less than a threshold.