Abstract:
Stabilized flame retardant polymer compositions containing a hydrated metal compound, e.g., a metal hydroxide, as a flame retardant, when added an effective stabilizing amount of an amine oxide, a hydroxyl amine or mixtures thereof, exhibit desirable physical characteristics of pure polymers due to the stabilizer additives, including excellent color stability, while attaining desirable fire-retardance standards.
Abstract:
A flame-retardant polymer composition includes: (a) a crystalline propylene homopolymer or copolymer; (b) a copolymer of ethylene with at least one alpha-olefin having from 4 to 12 carbon atoms, and optionally with a diene; and (c) a flame-retardant inorganic filler. Copolymer (b) has a density of between 0.90 and 0.86 g/cm3 and a Composition Distribution Index, defined as the weight percentage of copolymer molecules having an alpha-olefin content within 50% of the average total molar content of alpha-olefin, of greater than 45%.
Abstract translation:阻燃聚合物组合物包括:(a)结晶丙烯均聚物或共聚物; (b)乙烯与至少一种具有4至12个碳原子的α-烯烃和任选与二烯的共聚物; 和(c)阻燃无机填料。 共聚物(b)的密度为0.90至0.86g / cm 3,组成分布指数定义为α-烯烃含量在α-烯烃含量的平均总摩尔含量的50%以内的共聚物分子的重量百分比, 烯烃,大于45%。
Abstract:
The invention concerns polyolefin compositions with high flame resistance. The compositions comprise (percent by weight): A) from 20 to 60% by weight of a heterophasic olefin polymer composition comprising a crystalline olefin polymer (a) and an elastomeric olefin polymer (b), said composition (A) being optionally modified with at least one functional monomer in an amount from 0.005% to 0.6% by weight with respect to the total weight of the total composition; B) from 15 to 40% by weight of one or more than one inorganic hydrated fillers; C) from 12 to 40% by weight of one or more than one organic flame retardants containing nitrogen in the molecule; D) from 0 to 40% by weight of one or more than one inorganic anhydrous fillers. Possible applications include the use as insulating material in electric wires and cables and the use as waterproofing sheets for roofs and tunnels.
Abstract:
An intumescent polymer composition includes a matrix polymer, an acid catalyst source, a nitrogen source and an ionic phyllosilicate synergist having substantial cationic exchange capacity. Particularly preferred ionic phyllosilicates are montmorillonoids whereas pentaerythritol phosphate is a preferred acid catalyst source: 1
Abstract:
The invention provides a flame-retardant rubber composition which may form a vulcanizate of an elastomer whose deterioration of mechanical strength is little to enjoy excellent mechanical properties, even when a nonhalogenated flame retardant is contained in a high proportion in the composition, and a flame-retardant elastomer obtained therefrom. The flame-retardant rubber composition contains (A) an olefin copolymer having a functional group, which comprises (a-1) a structural unit derived from ethylene, (a-2) a structural unit derived from an &agr;-olefin compound having 3 to 10 carbon atoms, (a-3) a structural unit derived from a functional group-containing unsaturated compound, and optionally (a-4) a structural unit derived from a nonconjugated diene compound, and has an intrinsic viscosity [&eegr;] of 0.1 to 10 dL/g as measured in decalin at 135° C., (B) a vulcanizing agent and/or a crosslinking agent and (C) a nonhalogenated flame retardant. The flame-retardant elastomer is obtained by subjecting the flame-retardant rubber composition to a vulcanizing treatment.
Abstract:
This invention relates to a polymer composition comprising (A) from about 55% to about 75% by weight of at least one polyolefin, (B) from about 2% to about 12% by weight of at least one reaction product of an alpha, beta unsaturated carboxylic reagent and a polyolefin, and (C) from 15% to about 35% by weight of filler. In one aspect, the polymer compositions also include (D) at least one copolymer of ethylene and an olefin, (E) at least one polyamide, or (F) a mixture of (D) and (E). These compositions provide articles and films with improved scratch resistance and hardness. These compositions have improved processing character because their low coefficient of friction.
Abstract:
Polymer compositions comprising polysiloxanes and metal coated boron phosphates are described and they unexpectedly display flame retardant properties and hydrolytic stability without creating environmental hazards.
Abstract:
A highly flame retardant, impact modified polyolefin alloy is described, the composition of which includes: at least one polyolefin; at least one halogenated organic flame retardant; at least one semi-crystalline ethylene copolymer impact modifier, the copolymer optionally being functionalized, at least one oxygen-containing metal compound wherein the metal is selected from the group consisting of Group III, IV, V, and VI of the Periodic Table; and at least one fluorocarbon, at least a portion of which is fibrillated or fibrillatable. Optionally, the alloy will contain at least one of a functionalized silicone polymer, a hydrated metal silicate, a hydrated metal borate, a primary antioxidant, and a secondary antioxidant. Such thermoplastic polymer blends/alloys can be produced by combining all ingredients in a melt and applying shear to the melt through means of a high shear internal/continuous mixer or an extruder.
Abstract:
A cable, in particular for power transmission, for telecommunications or for data transmission, or also combined power/telecommunications cables, wherein at least one coating layer consists of a recyclable material which is halogen-free and has superior mechanical and electrical properties. This material consists of a polymer mixture comprising: (a) a crystalline propylene homopolymer or copolymer; and (b) an elastomeric copolymer of ethylene with at least one alpha-olefin having from 3 to 12 carbon atoms, and optionally with a diene; the said copolymer (b) being characterized by a 200% tension set value (measured at 20.degree. C. for 1 minute according to ASTM standard D 412) lower than 30%.