Abstract:
An apparatus configured to operate in a network comprises: control circuitry configured to perform a selection operation to select a preferred base station from one or more base stations in the network, each base station having a backhaul connection; connection circuitry configured to connect to the preferred base station; and communication circuitry configured to receive characteristic data of the backhaul connection of each of the one or more base stations. The control circuitry is configured to perform the selection operation in dependence on the characteristic data.
Abstract:
A rotatable antenna apparatus is provided that has a fixed unit for attachment of the apparatus to an external structure, and a rotatable unit mounted on the fixed unit for rotation relative to the fixed unit. The rotatable unit comprises both an antenna assembly and processing circuitry coupled to the antenna assembly for performing signal processing operations. The apparatus further includes a thermally conductive shaft connected to the rotatable unit and located for rotation within the fixed unit, and a thermally conductive coupling structure to conduct heat from one or more heat generating components of the processing circuitry into the thermally conductive shaft. A heat sink is then provided within the fixed unit, and is thermally coupled to the thermally conductive shaft to draw heat away from the thermally conductive shaft. This provides an efficient mechanism for removing heat from the rotatable unit, whilst still allowing the rotatable unit to be sealed against external environmental conditions.
Abstract:
An antenna apparatus for use in a wireless network and method of operating such an antenna apparatus are provided. Moreover a wireless network controller to provide a configuration of such an antenna apparatus, a method of operating such a wireless network controller, and a resulting wireless network are also provided. The antenna apparatus comprises a directional antenna and a uniform circular antenna array. The directional antenna can be rotatably positioned about an axis with respect to a fixed mounting portion of the apparatus in dependence on wireless signals received by the uniform circular antenna array. The uniform circular antenna array allows the antenna apparatus to receive wireless signals isotropically and thus to accurately monitor the wireless signal environment in which it finds itself. The antenna apparatus can thus monitor and characterise incoming signals, both from external interference sources and from other network nodes, and the directional antenna can then be positioned in rotation to improve the network throughput.
Abstract:
An apparatus and method are provided for controlling a wireless network for connecting network users to a communications network, the wireless network comprising a plurality of network components, the network components comprising a plurality of base stations connected to the communications network and a plurality of terminals connected to the network users, each terminal having a link with a base station to form a base station/terminal pair, and the links being established over a wireless resource comprising a plurality of resource blocks. The method comprises the steps of: determining, for each base station/terminal pair, a set of resource utilisation fractions indicating probabilities for establishing the link between that base station and that terminal via each of the plurality of resource blocks; determining a set of co-channel interference matrices, a co-channel interference matrix being determined for each network component, the co-channel interference matrix indicative of an expected interference from other network components, for each of the plurality of resource blocks, when that network component receives network traffic via that resource block, wherein the expected interference is probabilistically determined in dependence on the sets of resource utilisation fractions; distributing, to each base station, corresponding elements from the sets of resource utilisation fractions and the sets of co-channel interference matrices; suppressing, in each network component, co-channel interference in dependence on the co-channel interference matrix determined for that network component; and in each base station, when exchanging network traffic with the plurality of terminals, dynamically establishing the links as required to handle the network traffic for that base station by selecting from the resource blocks in accordance with the resource utilisation fractions.
Abstract:
A point to multipoint device being operable to employ multiple sets of beams, at any point in time one set being used. The point to multipoint device comprises beam set generation logic for generating the multiple sets of beams arranged into one or more groups, each group comprising one beam from each set . Within each group the beams of that group are orthogonal with respect to each other, and each beam within each set is generated randomly with respect to other beams in that set. An interface is provided for receiving a synchronisation signal issued to all point to multipoint devices in the wireless network. Beam switching logic is then used to determine, having regard to the synchronisation signal, switch times at which the point to multipoint device switches from one set of beams to another set of beams, the switch times being the same for all point to multipoint devices in the wireless network.
Abstract:
A telecommunications unit and method of interfacing with such a telecommunications unit are provided. The telecommunications unit (for example a subscriber terminal or a base station) is arranged to communicate over a wireless link with a further telecommunications unit of a telecommunications system in order to allow traffic data to be passed between the telecommunications unit and the further telecommunications unit. The telecommunications unit comprises a management processor operable to handle management data, and inductive loop logic coupled to the management processor and operable to allow management data to be passed between the management processor and a portable management unit via a separate wireless link between the inductive loop logic and external inductive loop logic associated with the portable management unit. This provides a particularly efficient technique for the transmission of management data between the telecommunications unit and the portable management unit, without the need for a physical contact to be provided on the exterior surface of the telecommunications unit.
Abstract:
A receiver for detecting and recovering data from received data bearing radio signal samples comprises first and second detecting processors. Each of the detecting processors comprises a data store operable to store a predetermined number of the signal samples, an equaliser operable to combine the signal samples with a plurality of equaliser coefficients, to produce refined signal samples representative of the received signal samples but with the effect of inter-symbol interference caused by multi-path propagation experienced by the received radio signals at least partially reduced, a combiner operable to receive the refined signal samples from the equaliser and to receive second refined signal samples, from the other detecting processor, derived from a further received version of the received signals, and to combine the first and second refined signal samples, and a data processor operable to receive the stored signal samples from the data store and receive second stored signal samples and to adapt the equaliser coefficients for the first detecting processor and the equaliser coefficients for the second detecting processor, to the effect of increasing the probability of correctly recovering the data from the received radio signal samples. By communicating the stored signal samples from the samples store of each of the detecting processors to one of the data processors acting as a master detecting processor, the equaliser coefficients for the equaliser for each detecting processor can be calculated together to the effect of increasing the probability of correctly recovering the data from the combined signals. In preferred embodiments the equaliser is a linear equaliser. The receiver finds application, in particular but not exclusively, in recovering data from spread spectrum radio signals, as used for example in CDMA systems.
Abstract:
A dipole antenna apparatus, and method of manufacture of such an apparatus, are provided. The antenna apparatus has a conductive plate extending in a first plane, and a pair of conductive elements arranged to form a dipole antenna, where the pair of conductive elements are located in a second plane parallel to the first plane. Each conductive element forms a conductive ring in the second plane that surrounds a non-conductive inner area. The first conductive element in the pair of conductive elements has a conductive bridge extending across the conductive ring to divide the non-conductive inner area into at least two portions. A conductive connection then extends from the conductive bridge to the conductive plate. As a result, in normal use the conductive plate acts as a reflector for the dipole antenna, but in the event of a direct current event the presence of the conductive bridge and the conductive connection causes the conductive plate to operate as a ground plane for direct current within the first conductive element of the dipole antenna. It has been found that such an approach provides a particularly efficient, low cost, design for a dipole antenna.
Abstract:
A feeder terminal comprises backhaul communication circuitry connecting a communications network via a wireless backhaul, and providing an access base station with wireless backhaul access. Backhaul information circuitry determines congestion information relating to the wireless backhaul and communication circuitry enables communication with an access base station and provides the congestion information to the access base station. In response to a demand message from the access base station comprising quality of service requirements, the communication circuitry forwards the demand message to the communications network. Additionally, an access base station comprises communication circuitry enabling communication with a feeder terminal. The communication circuitry provides a quality of service demand message to the feeder terminal based on a quality of service requirement and receives congestion information relating to the wireless backhaul from the feeder terminal. The access control circuitry controls usage of the wireless backhaul by user equipment in dependence on the congestion information.
Abstract:
Methods and apparatuses for configuring the zone served by a base station providing wireless communication for a plurality of user equipment located in moving vehicles are disclosed. Motion reports are received from the user equipment, indicating a current location, a current direction of motion, and a current speed of the moving vehicles. The motion reports are received from at least one of: user equipment currently using the base station for wireless communication; user equipment currently within the zone served by the base station, but not using the base station for wireless communication; and/or user equipment currently using at least one neighbouring base station to the base station for wireless communication. A configuration for the zone served by the base station is then determined, based on the motion reports and on locations of the base station and of the at least one neighbouring base station. The configuration for the zone served by the base station is then applied to the base station.