Abstract:
A content Addressable memory (CAM) for performing search operations using variable width search data, said CAM comprising a plurality of arrays of CAM cells, each coupled to a respective sub-search data bus, the sub-search buses being confined to form a main search data bus, to which is applied the search data; selector circuits receiving match line signals from respective CAM arrays, the match line signals being indicative of the results of a search and comparison formed in the associated CAM array, the selector circuit being responsive to a mode selection signal for selecting one or more of said match line output signals to be switched to a priority encoder and multiple match resolver (PE-MMR), wherein in a first mode the match line output signals are switched to said PE-MMR and in a second mode groups of match line output signals from selected arrays are switched to said PE-MMR.
Abstract:
A system and method for controlling a power converter is presented. An embodiment comprises an analog differential circuit connected to an analog-to-digital converter, and comparing the digital error signal to at least a first threshold value. If the digital error signal is less than the first threshold value, a pulse is generated to control the power converter. Another embodiment includes multiple thresholds that may be compared against the digital error signal.
Abstract:
A system and method for controlling a power converter is presented. An embodiment comprises an analog differential circuit connected to an analog-to-digital converter, a digital pulse generator, and a pre-driver to control the power converter. Another embodiment also includes a digital filter as part of the control loop that may be used to control the loop characteristics of the control circuit. Yet another embodiment replaces the differential circuit with a sigma-delta analog-to-digital modulator and a decimator.
Abstract:
A method and circuit is provided for detecting and correcting errors in an array of content addressable memory (CAM) cells. The array includes wordlines, searchlines, bitlines, and matchlines for reading from, writing to, and searching CAM cells in the array. The method includes the following steps: a row parity bit corresponding to a parity of a first plurality of bits stored along a row of CAM cells is stored; a column parity bit corresponding to the parity of a second plurality of bits stored along a column of CAM cells is stored; a parity of the first plurality of bits is read and generated and the generated parity is compared to the stored row parity bit, if the generated and stored parity bits do not match, columns of the array are cycled through; a parity of the second plurality of bits is read and generated and the generated parity is compared to the stored column parity bit until a mismatch is indicated; and, a bit located at an intersection of the mismatched row and column is inverted if the mismatch is indicated.
Abstract:
A priority encoder (PE) for a CAM, comprising a plurality of PE blocks, each receiving a plurality of match results corresponding to data entries in a corresponding data array block and, for determining an address of a highest priority data entry based on a physical location in the data array block during a CAM search-and-compare operation a register for storing a user defined priority value assigned to each PE block and means for evaluating priority values and the address determined by the plurality of PE blocks to select a PE block having the highest priority data entry.
Abstract:
A priority encoder (PE) for a CAM, comprising a plurality of PE blocks, each receiving a plurality of match results corresponding to data entries in a corresponding data array block and, for determining an address of a highest priority data entry based on a physical location in the data array block during a CAM search-and-compare operation a register for storing a user defined priority value assigned to each PE block and means for evaluating priority values and the address determined by the plurality of PE blocks to select a PE block having the highest priority data entry.
Abstract:
A content Addressable memory (CAM) for performing search operations using variable width search data, said CAM comprising a plurality of arrays of CAM cells, each coupled to a respective sub-search data bus, the sub-search buses being confined to form a main search data bus, to which is applied the search data; selector circuits receiving match line signals from respective CAM arrays, the match line signals being indicative of the results of a search and comparison formed in the associated CAM array, the selector circuit being responsive to a mode selection signal for selecting one or more of said match line output signals to be switched to a priority encoder and multiple match resolver (PE-MMR), wherein in a first mode the match line output signals are switched to said PE-MMR and in a second mode groups of match line output signals from selected arrays are switched to said PE-MMR.
Abstract:
A priority encoder (PE) for a CAM, comprising a plurality of PE blocks, each receiving a plurality of match results corresponding to data entries in a corresponding data array block and, for determining an address of a highest priority data entry based on a physical location in the data array block during a CAM search-and-compare operation a register for storing a user defined priority value assigned to each PE block and means for evaluating priority values and the address determined by the plurality of PE blocks to select a PE block having the highest priority data entry.
Abstract:
A content Addressable memory (CAM) for performing search operations using variable width search data, said CAM comprising a plurality of arrays of CAM cells, each coupled to a respective sub-search data bus, the sub-search buses being confined to form a main search data bus, to which is applied the search data; selector circuits receiving match line signals from respective CAM arrays, the match line signals being indicative of the results of a search and comparison formed in the associated CAM array, the selector circuit being responsive to a mode selection signal for selecting one or more of said match line output signals to be switched to a priority encoder and multiple match resolver (PE-MMR), wherein in a first mode the match line output signals are switched to said PE-MMR and in a second mode groups of match line output signals from selected arrays are switched to said PE-MMR.
Abstract:
A method for reducing the coupling noise in a Content Addressable Memory (CAM), the CAM having a first bitline pair and a second bitline pair, both pairs aligned along a first axis; a first memory cell connected to the first bitline pair and a second memory cell to the second bitline pair; having a first match line and a first word line aligned along a second axis, the first match line and the first word line connecting the first and the second memory cells defining a first row in a first column; having a second row adjacent the first row, the second row comprising a third cell and a fourth cell, the third and fourth cells connecting the first and second bitline pairs and a second word line and a second match line, the method comprising arranging the first memory cell in a first orientation and the second memory cell in a second orientation, wherein the second orientation being a first axis mirror image to the first orientation; segmenting the first and second bitline pairs between the first row and the second row; adding a first twisting structure to the first bitline pair and a second twisting structure to the second bitline pair; arranging the third cell in a third orientation, the third orientation being rotated 180 degrees with respect to the first orientation; and arranging the fourth cell in a fourth orientation, the fourth orientation being rotated 180 degrees with respect to the second orientation.