Abstract:
An organic electroluminescent display device includes a first substrate, a second substrate spaced apart from and facing the first substrate to form a space therebetween, an array element on an inner surface of the first substrate, an organic electroluminescent diode on an inner surface of the second substrate, a seal pattern along a peripheral portion between the first and second substrates, and a connection pattern electrically interconnecting the array element and the organic electroluminescent diode, wherein a pressure within the space between the first and second substrates is lower than an ambient atmospheric pressure.
Abstract:
A liquid crystal display device has first and second substrates. A first electrode on the first substrate is alignment-treated and a second electrode on the second substrate is alignment-treated. A liquid crystal layer is disposed between the first substrate and the second substrate. Alignment-treating includes forming an alignment direction. The alignment direction of the first and second substrates is formed by irradiating an ion beam onto the first and second electrodes using an ion beam irradiation apparatus.
Abstract:
A liquid crystal dispensing apparatus dispenses liquid crystal onto a substrate. The liquid crystal dispensing apparatus includes a frame, a table, at least one liquid crystal discharge device, and a liquid crystal amount inspecting portion. The table is installed on the frame to have the substrate to be mounted thereon. The liquid crystal discharge device adjustably discharges an amount of liquid crystal, and the liquid crystal amount inspecting portion inspects a liquid crystal dispensing amount by comparing an actual amount of liquid crystal discharged from the liquid crystal discharge device with a preset liquid crystal amount. The liquid crystal discharge device includes a piston to perform ascending motions to draw in the liquid crystal and descending motions to discharge the liquid crystal with an angle of at least a portion of the liquid crystal discharge device determining a magnitude of the ascending/descending motion to control an amount of liquid crystal discharged.
Abstract:
A liquid crystal display device is provided wherein an adhesive force between a seal and a lower plate is improved upon bonding of an upper plate to the lower plate. In high aperture liquid crystal display panels, organic protective films are used to reduce dielectric constants. However, the seal, used when bonding the upper and lower plates of the liquid crystal panel, generally do not adhere well to organic materials. In this invention, holes are generated in the organic protective film so that the seal bonds with inorganic materials such as the lower glass plate or the gate insulating film.
Abstract:
An apparatus for manufacturing a liquid crystal display includes a unitary vacuum processing chamber having a substrate entrance, a loader part to load first and second substrates through the substrate entrance, one of the first and second substrates having a liquid crystal material disposed thereupon, upper and lower stages disposed within the vacuum processing chamber for affixing the first and second substrates, a stage moving system for providing relative movement between the upper and lower stages, and a vacuum generating system for evacuating an interior of the vacuum processing chamber.
Abstract:
A liquid crystal display includes a first substrate; a second substrate cohered to the first substrate with a separation from the first substrate; a first orientation film formed on an inner surface of the first substrate; a second orientation film formed on an inner surface of the second substrate; and a liquid crystal injected between the first substrate and the second substrate, wherein the first orientation film and the second orientation film are formed to face each other, and the thickness of the first orientation film or the second orientation film is formed differently in different portions.
Abstract:
A liquid crystal display (LCD) device having a color filter on a thin film transistor (TFT) structure (COT structure). The color filter layers are formed on the same substrate as the TFT to be in direct contact with the source and drain electrodes without any intermediaries therebetween. In particular, there is no need for a passivation layer between the TFT and the color filter layers. Preferred embodiments include a back etched type TFT that does not require a light shielding layer, an etch-stopped type TFT having an etch stop layer, and a coplanar type TFT having a light shielding layer below the gate electrode of the TFT.
Abstract:
A flat luminescence lamp includes a first substrate having a first surface and a second surface, a second substrate having a first surface disposed facing opposite to the first surface of the first substrate, a first luminescence layer formed on the first surface of the first substrate, a second luminescence layer formed on the first surface of the second substrate, and a plurality of grooves formed on the second surface of the first substrate.
Abstract:
A dispenser for a liquid crystal display panel includes a substrate on which a plurality of image display parts is formed, a table on which the substrate is loaded, a plurality of syringes for dispensing a material on the substrate, and a plurality of supports aligning and affixing the plurality of syringes, wherein at least a first predetermined number of the plurality of syringes is affixed and aligned to at least one of the plurality of supports.
Abstract:
A liquid crystal display device includes gate and data lines defining a pixel region on a first substrate. A first insulating layer covers the gate line and a gate electrode. A thin film transistor, formed at a crossing region of the gate and data lines, has the gate electrode, a semiconductor layer, a source electrode, and a drain electrode. A red, green or blue color filter is formed over the first insulating layer in the pixel region. A drain contact hole exposes the drain electrode. A light-shielding color filter pattern including at least two of red, green and blue resins is formed over the semiconductor layer. A pixel electrode is formed over the color filter in the pixel region and contacts the drain electrode. A common electrode is formed on a second substrate facing the first substrate with a liquid crystal layer interposed between the common and pixel electrodes.