Abstract:
A technique to assess or analyze cap removal or opening torque or rotational position is provided. In at least one form, a high speed, on-line machine vision system measures or determines the rotational position of a cap on a bottle, measures or determines the rotational position of the finish or neck of the same bottle, and then optionally uses such positional information to predict the opening or removal torque that will be required for a consumer to remove the bottle cap from the bottle.
Abstract:
A system and method for utilizing corner-cube reflector technology for irradiation control in direct radiant heating systems is described. The system and method has application in many types of direct irradiation heating systems and is applicable to both narrowband or broadband directed irradiation heating systems. The purpose and result of the implementation is to improve the overall system efficiency through the redirection of photons back to a targeted item which is being heated or treated with the irradiation energy.
Abstract:
A way of using narrowband irradiation to de-ice or release ice from a surface is provided. The methodology can be applied to a range of different types of de-icing from windshield de-icing to aircraft wing de-icing to releasing ice from the ice tray of an ice making machine. While there are many different specific applications, the concept and methodologies taught remain similar across all of them.
Abstract:
This application relates to an apparatus and method for automated inspection of formed metal containers. More specifically, it pertains to the use of machine vision systems to identify and correlate manufacturing defects occurring in formed food and beverage containers to specific manufacturing paths or sources of origin (e.g., body makers) used in the container forming process. The disclosed invention is enabled by the placement of a machine-readable code on specific portions of the can body during the forming process and the use of illumination exposure techniques.
Abstract:
This application relates to an apparatus and method for providing snapshot action thermal infrared imaging within automated process control article inspection applications. More specifically, it pertains to the use of snapshot mode lead salt area-array imaging sensors (20) as the imaging front-end in high-speed machine vision inspection systems (12). the relatively low-cost, good measurement sensitivity at temperatures consistent with thermo-electric cooling means, and the ability to be operated in snapshot mode enables lead salt-based image acquisition sensors (20) to be used in a variety of automated process control and article inspection applications.
Abstract:
An engineered lighting system for high speed video inspection includes an array of light emitting diodes (10) including light emitting diodes for use in time delay integration (TDI) inspection of web materials (38). The light emitting diodes (10) of the array are selectively controllable to accomplish sequential illumination and carefully controllable imaging of a specified section (42) of a continuously moving specimen or specimens. LEDs with different wavelength light output, or multi-wavelength light LEDs are utilized for rapid and reliable inspection of surfaces with varying color or contour or detect characteristics. The system also includes an array of optional backlighting elements (26) to aid in illumination of semi-opaque specimens to accomplish inspection thereof.
Abstract:
An engineered lighting system for high speed video inspection includes an array of light emitting diodes including light emitting diodes for use in time delay integration (TDI) inspection of web materials. The light emitting diodes of the array are selectively controllable to accomplish sequencial illumination and carefully controllable imaging of a specified section of a continuously moving specimen or specimens. The system also includes an array of optional backlighting elements to aid in illumination of semi-opaque specimens to accomplish inspection thereof.
Abstract:
A method and system are provided for digitally injecting heat into a wide range of products by way of incorporation of a special class of semi-conductor lasers, e.g. surface emitting devices. This technique relates to a more specific, economical, and advantageous way of practicing the art of directly injecting narrowband radiant energy that desirously matches the absorption specification of a particular material at a specified wavelength.
Abstract:
A system for identification and confirmation of legitimate deposit refund containers on which a monetary deposit has been collected. The containers (102) include a marking (103) indicating eligibility for collection of the monetary deposit upon return of the containers. The system includes at least one emitter (112) operative to emit radiation positioned to direct the radiation toward a container, at least one sensor (114) operative to sense the radiation reflected back from the container and a control system operative to drive the at least one emitter, receive information from the at least one sensor, and process the information to determine eligibility for the container for the refund of the monetary deposit.
Abstract:
A laser diode based system for direct injection of selected thermal-infrared (IR) wavelength radiation or energy into articles for a wide range of processing purposes is provided. These purposes may include heating, raising or maintaining the temperature of articles, or stimulating a target item in a wide range of different industrial, medical, consumer, or commercial applications. The system is especially applicable to operations that require or benefit from the ability to irradiate at specifically selected wavelengths or to pulse or inject the radiation. The system is particularly advantageous when functioning at higher speeds and in a non-contact environment with the target.