Abstract:
The present patent application comprises a method and apparatus for multiplexing reverse link feedback channels on a single reverse link frequency supporting multiple forward link frequencies for forward link channels, comprising assigning the reverse link frequency to a mobile station, assigning one or more of the forward link frequencies to the reverse link frequency, and code division multiplexing a plurality of the reverse link feedback channels on the reverse link frequency.
Abstract:
Embodiments disclosed herein relate to methods and systems for reporting and compiling connection failures in wireless communication systems. In an embodiment, when an access terminal experiences a connection failure (e.g., an unintended one), the access terminal may generate a connection failure record associated with the event, and send a message containing the connection failure record to an access network it has since established the connection. The access network may send a message containing a connection failure report acknowledgement (ACK) message to the access terminal, upon reception of the connection failure report message. The network operators may use the connection failure records thus compiled to identify problematic spots in the system and improve the quality of service.
Abstract:
Embodiments disclosed herein relate to a new set of radio link protocols (RLPs) configured to provide for efficient data transmission in a multi-link communication system. In an embodiment, an upper-layer packet is segmented into link-layer packets to be transmitted over a plurality of communication links, each including a first sequence number in accordance with a predetermined order. A second sequence number is further added to each link-layer packet to be transmitted for the first time. The second sequence number is configured to be in a sequence space associated with a particular communication link, and may be used for detection of missing packets.
Abstract:
Embodiments disclosed herein relate to methods and systems for grouping pilot signals and using such grouping for pilot strength reporting and set management in multi-carrier communication systems. In one embodiment, an access network may assign a group identifier (or "group ID") to each of the pilot signals associated with the sector, e.g., based on the coverage areas of the pilot signals, and transmit the pilot signals with the corresponding group IDs. PN offset may be used as the group ID. An access terminal may group the pilot signals received into one or more pilot groups in accordance with their group IDs, and select a representative pilot signals from each pilot group for pilot strength reporting. The access terminal may also use the pilot grouping to perform effective set management.
Abstract:
Embodiments disclosed herein relate to a new set of radio link protocols (RLPs) configured to provide for efficient data transmission in a multi-link communication system. In an embodiment, an upper-layer packet is segmented into link-layer packets to be transmitted over a plurality of communication links, each including a first sequence number in accordance with a predetermined order. A second sequence number is further added to each link-layer packet to be transmitted for the first time. The second sequence number is configured to be in a sequence space associated with a particular communication link, and may be used for detection of missing packets.
Abstract:
To access a first communication system, a terminal determines a transmission time for an access probe, an expected response time from the system, and a protected time interval based on the transmission time and/or expected response time. The terminal determines a starting time for sending the access probe such that the protected time interval does not overlap a tune-away interval in which the terminal is to monitor anther frequency/air-interface. This starting time may be set initially to the end of a prior access probe plus a pseudo-random wait duration and may be advanced forward or moved backward in time, if needed, by a time duration selected such that the protected time interval does not overlap the tune-away interval.
Abstract:
A user terminal establishes a session with a first access point (AP0) and obtains a token associated with modem configuration information used for radio communication. The user terminal thereafter establishes a connection with a second access point (AP1) by sending the token. AP1 receives the token, obtains the modem configuration information associated with the token, and initializes an air interface protocol stack with the modem configuration information to obtain a modem-specific protocol stack for the user terminal. AP1 sends a response indicating successful connection setup. The user terminal and AP1 thereafter communicate in accordance with the modem-specific protocol stack. AP1 may attempt to fetch the session for the user terminal from AP0. If this is successful, then AP1 updates the protocol stack with the session information to obtain a complete protocol stack for the user terminal. The user terminal and AP1 thereafter communicate with the complete protocol stack.