Abstract:
A non-destructive evaluation method for fiber rope comprises the following steps. A rope construction type is identified. An expected life of the rope construction type is determined. At least two characteristics of the rope construction types are identified. A characteristic adjustment factor is stored for at least one of the at least two characteristics. At least one rope characteristic interaction between at least two of the identified rope characteristics is identified. An interaction adjustment factor is stored for the at least one identified rope characteristic interaction. An adjusted remaining life is calculated based the expected life, the at least one characteristic adjustment factor, and the at least one interaction adjustment factor.
Abstract:
A hook assembly comprises a hook member and a pin assembly. The hook member defines a base portion, a hook, and first and second pin arms. The hook extends from the base portion and defines a first, second, third, and fourth hook portions and a hook opening. First and second lock projections extend from the second hook portion and fourth hook portions to define a lock gap. The hook opening has a first hook opening dimension extending between the second hook portion and the fourth hook portion and a second opening dimension extending between the third hook portion and the lock gap. The first and second pin arms extend from the base portion. The pin assembly engages the first and second pin arms. The first rope segment engages the pin assembly and the second rope segment engages the third hook portion to place the hook assembly under tension.
Abstract:
A method for non-destructively estimating a current physical condition of a cordage product in-service is described. The method involves obtaining sensor data associated with the cordage product while in-service handling a load. The sensor data includes any combination of cordage product elongation data, applied load data, and diametric data. The method further includes determining an axial stiffness value associated with the cordage product based on the sensor data and estimating a health state of the cordage product based on the determined axial stiffness value. The estimated health state is indicative of the current physical condition of the cordage product.
Abstract:
A blended yarn comprises a plurality of first fibers and a plurality of second fibers. A coefficient of friction of the second fibers is greater than a coefficient of friction of the first fibers. Abrasion resistance characteristics of the second fibers are greater than abrasion resistance properties of the first fibers. A gripping ability of the second fibers is greater than a gripping ability of the first fibers. The plurality of second fibers are combined with the plurality of first fibers such that the first fibers extend along the length of the blended yarn and the second fibers do not extend along the length of the blended yarn at least a portion of the second fibers are engaged with and extend from the plurality of first fibers effectively to define surface characteristics of the blended yarn.
Abstract:
A rope structure or method of forming a rope structure comprises a rope comprising a plurality of strands. The rope comprises first and second splice locations, an eye region between the first and second splice locations, and a main region. The main region of the rope is located adjacent to the first splice location and in an opposite direction along the rope from the eye region. At least one of the strands is a selected strand. An extracted portion of the at least one selected strand is extracted from the rope and inserted into the rope such that a bridge portion of the at least one selected strand extends between the first and second splice locations and a diameter of the rope is substantially consistent in the main region.
Abstract:
A method for non-destructively estimating a current physical condition of a cordage product in-service is described. The method involves obtaining sensor data associated with the cordage product while in-service handling a load. The sensor data includes any combination of cordage product elongation data, applied load data, and diametric data. The method further includes determining an axial stiffness value associated with the cordage product based on the sensor data and estimating a health state of the cordage product based on the determined axial stiffness value. The estimated health state is indicative of the current physical condition of the cordage product.
Abstract:
A round sling system comprises a bearing structure, a cover, and at least one organizer secured to the cover. The bearing structure is arranged to define a plurality of loop portions and to define at least one bearing structure end portion. The cover defines a cover chamber. The at least one organizer is configured to engage the bearing structure such that the at least one organizer maintains a position of the bearing structure relative to the cover and the at least one organizer maintains a spatial relationship of the loop portions at least within the at least one bearing structure end portion.
Abstract:
A termination assembly for a composite rope structure comprising an end comprises a distal connection member and a proximal connection member. The distal connection member defines a first threaded surface and a working portion, where the working portion is adapted to be connected to a structure. The proximal connection member defines a second threaded surface, an internal surface, and a proximal opening. The first and second threaded surfaces are configured to engage each other to detachably attach the distal connection member and the proximal connection member. The internal surface of the proximal connection member is configured to engage the end of the composite rope structure to secure the composite rope structure relative to the proximal connection member.
Abstract:
A rope structure (20) comprising a plurality of rope subcomponents (50), a plurality of bundles (40) combined to form the rope subcomponents (50), a plurality of first yarns (30) and a plurality of second yarns (32) combined to form the bundles (40). In one embodiment, the first yarns (30) have a tenacity of approximately 25-45 gpd and the second yarns (32) have a tenacity of approximately 6-22 gpd. In another embodiment, the first yarns (30) have a breaking elongation of approximately 2%-5% and the second yarns (32) have a breaking elongation of approximately 2%-12%.