Abstract:
Techniques to transmit data with cyclic delay diversity and pilot staggering are described. For cyclic delay diversity, OFDM symbols having different cyclic delay durations are generated. The cyclic delay durations for the OFDM symbols may be selected to be time varying with respect to the cyclic delay durations for OFDM symbols transmitted by a neighboring base station. An FDM pilot is generated and multiplexed on multiple sets of subbands in different symbol periods. Waveforms for a second radio technology (e.g., W-CDMA) may be generated for data to be transmitted with this radio technology. The OFDM symbols are multiplexed onto time slots used for OFDM, and the waveforms for the second radio technology are multiplexed onto time slots used for this radio technology. One or multiple modulated signals may be generated based on the multiplexed OFDM symbols and waveforms. Each modulated signal is transmitted from a respective antenna.
Abstract:
Techniques for transmitting data in a wireless communication system are described. Physical channels to be sent in a super-frame are identified and allocated time slots in the super-frame. The coding and modulation for each physical channel are selected based on its capacity. The data for each physical channel is selectively encoded based on an outer code rate, e.g., for a Reed-Solomon code, and further encoded based on an inner code rate, e.g., for a Turbo code. The encoded data for each physical channel is mapped to modulation symbols based on a selected modulation scheme. The modulation symbols for each physical channel are further processed (e.g., OFDM modulated) and multiplexed onto the time slots allocated to the physical channel. Data to be sent using another radio technology (e.g., W-CDMA) is also processed and multiplexed onto time slots allocated for this radio technology.