Abstract:
The present disclosure relates to an apparatus (100) and method for controlling a plurality of simultaneously active optical traps (OT1,OT2,OT3). In one method, trapping beams (TB1,TB2,TB3) are provided and redirected for individually controlling a respective position (X,Y) of optical traps (OT1,OT2,OT3) formed by focusing of the redirected trapping beams in a sample volume (SV). Light (L11,L20) from the sample volume (SV) corresponding to the optical traps is received. A path of a detector beam (AB) is overlapped with one of the trapping beams (TB3), wherein the detector beam has a distinct wavelength (λA) from that of the overlapping trapping beam (TB3). In one channel, the light from the sample volume is filtered according to wavelength, and only the filtered light having the wavelength (λA) of the detector beam (AB) is measured.
Abstract:
The kit comprises a stop element comprising a first part and a second part, wherein the first part and the second part are configured to be movable between a first state, in which the first part and the second part are spaced at a first distance, and a second state, in which the first part and the second part are spaced at a second distance, wherein the first distance is smaller than the second distance, and wherein the first and second parts are biased to the first state, wherein the second distance is the same or larger than a distance between diametrically opposite sides of the outer surface of the implant guide, such that, before implantation, the first part and the second part can be arranged, in the second state, on diametrically opposite sides of the outer surface, and that during movement in the implantation direction of the dental implant into the jaw, the stop surface of the implantation channel will push the stop element towards the groove until the groove will allow the first and second part to move towards the first state and the stop element will be caught by the groove, therewith blocking further movement of the implant guide in the implantation direction.
Abstract:
Distribution of reference frequency and timing information in a network involves determining latency between a first and second node from time delay between transmission of a reference frequency and timing signal and reception of an optical return timing signal in response. In a network with pairs of first and second optical fibers in optical fiber connections between network nodes, for transmission of optical data signals separately in mutually opposite directions between the network nodes respectively, provisions are made to transmit the reference frequency and timing signal and the resulting optical return signal via the same fiber, one in the same direction as the unidirectional data signal over that fiber and the other upstream. Repeaters between the nodes may be modified to pass such signals upstream and downstream. In an embodiment wherein the network provides for an optical supervisory channel, the optical filters for combining the optical supervisory channel signal with the unidirectional data signal and separating the optical supervisory channel signal from the unidirectional data signal are used to combine and separate the reference frequency and timing signal and to pass the optical return timing signal. For this purpose, further optical filters may be added outside the main optical data channel to combine and separate the reference frequency and timing signal and the optical supervisory channel and to pass the optical return signal back to the filter that separates the optical supervisory channel signal from the data signal.
Abstract:
A fibre endoscope system (100) comprises a catheter (10) with a probe head (10a) for entering into a body cavity (C) adjacent or near a sample region (S). A source fiber (11) has a first fiber ending (11a) and a signal fiber (12) has a second fiber ending (12a) both remote from the probe head (10a) but separate. A sampling fiber (13) has a third fiber ending (13a) disposed at the probe head (10a). A fiber coupler (15) is configured to optically couple at least the source fiber (11) to the sampling fiber (13), and the sampling fiber (13) to the signal fiber (12). A sampling fiber length (L13) of the sampling fiber (13) between a fiber coupler (15) and the third fiber ending (13a) is shorter than a source fiber length (L11) of the source fiber (11) between the fiber coupler (15) and the first fiber ending (11a).
Abstract:
A method comprises receiving images representing manipulating cellular bodies that includes exerting force pulses to the bodies on a wall surface; analyzing the images to determine the size of the bodies and tracking locations during and after each of force pulses, the tracking locations defining first trajectories of the bodies moving away from the wall surface and trajectories of the bodies moving towards the wall surface; determining densities of the bodies using the second trajectories and a sedimentation model of the bodies moving towards the wall surface and determining body velocities based on the first trajectories and a velocity model of the bodies moving away from the wall surface; and, determining a contrast factor for each body based on the sizes and the densities, the force applied to the bodies and the body velocities and determining a compressibility for each of the bodies based on the determined contrast factors.
Abstract:
The present invention relates to methods and cross-linkers for the macrocyclization of proteins. The invention is useful for increasing the stability of a protein.
Abstract:
There is provided a spectroscopy apparatus for measuring fluorescence signals from a photosynthetic object. The spectroscopy apparatus comprises:
one or more light excitation sources (26,28) operable to carry out time-varying excitation of the fluorescence from the photosynthetic object; and one or more fluorescence-sensitive detection channels (36,38,44,46) configured to simultaneously record the fluorescence as a function of time with a microsecond to millisecond time resolution and as a function of wavelength with a wavelength resolution of 10 nm or better, responsive to the excitation of the fluorescence from the photosynthetic object by the or each light excitation source (26,28).
Abstract:
The disclosure herein are materials and methods for the treatment of snake bite. Aspects of the disclosure includes pharmaceutical compositions, and kits, both of which may be of use in the treatment of snake bite.
Abstract:
The invention relates to the use of a single heavy chain variable domain antibody against human cytomegalovirus protein US28, which antibody binds to the extracellular region including, for example, the N-terminal extracellular region and/or the extracellular loops of US28, for isolation of cells that are infected with cytomegalovirus and/or for ex vivo reactivation of cytomegalovirus in latently infected cells. The invention further relates to the anti-US28 antibody for use in a method of reactivating cytomegalovirus in infected cells, or in a method of eliminating infected cells. The invention further relates to a tissue, organ, or cells such as bone marrow stem cells, from which cells that were infected with CMV have been removed with the use of the anti-US28 antibody.
Abstract:
The invention relates to the use of sphingosine-based compounds, in particular phytosphingosine compounds, in the protection of hydroxyapatite containing materials such as teeth and bone. Such compounds are especially useful in the treatment and prevention of dental caries, dental erosion, dentine hypersensitivity and tartar (dental calculus) formation. Methods and devices are also provided for preventing biofilm formation using sphingosine-based compounds. Compositions comprising sphingosine-based compounds are also provided.