Abstract:
A device including one or more low-conducting layers is provided. A low-conducting layer can be located below the channel and one or more attributes of the low-conducting layer can be configured based on a minimum target operating frequency of the device and a charge-discharge time of a trapped charge targeted for removal by the low-conducting layer or a maximum interfering frequency targeted for suppression using the low-conducting layer. For example, a product of the lateral resistance and a capacitance between the low-conducting layer and the channel can be configured to be larger than an inverse of the minimum target operating frequency and the product can be smaller than at least one of: the charge-discharge time or an inverse of the maximum interfering frequency.
Abstract:
A method of fabricating a device using a layer with a patterned surface for improving the growth of semiconductor layers, such as group III nitride-based semiconductor layers with a high concentration of aluminum, and the resulting device having such a layer with a patterned surface, are provided. The patterned surface can include a substantially flat top surface and a plurality of stress reducing regions, such as openings. The substantially flat top surface can have a root mean square roughness less than approximately 0.5 nanometers, and the stress reducing regions can have a characteristic size between approximately 0.1 microns and approximately five microns and a depth of at least 0.2 microns. A layer of group-Ill nitride material can be grown on the first layer and have a thickness at least twice the characteristic size of the stress reducing regions.
Abstract:
A device including one or more layers with lateral regions configured to facilitate the transmission of radiation through the layer and lateral regions configured to facilitate current flow through the layer is provided. The layer can comprise a short period superlattice, which includes barriers alternating with wells. In this case, the barriers can include both transparent regions, which are configured to reduce an amount of radiation that is absorbed in the layer, and higher conductive regions, which are configured to keep the voltage drop across the layer within a desired range.
Abstract:
A composite material, which can be used as an encapsulant for an ultraviolet device, is provided. The composite material includes a matrix material and at least one filler material incorporated in the matrix material that are both at least partially transparent to ultraviolet radiation of a target wavelength. The filler material includes microparticles and/or nanoparticles and can have a thermal coefficient of expansion significantly smaller than a thermal coefficient of expansion of the matrix material for relevant atmospheric conditions. The relevant atmospheric conditions can include a temperature and a pressure present during each of: a curing and a cool down process for fabrication of a device package including the composite material and normal operation of the ultraviolet device within the device package.
Abstract:
A semiconductor device including a low conducting field-controlling element is provided. The device can include a semiconductor including an active region (e.g., a channel), and a set of contacts to the active region. The field-controlling element can be coupled to one or more of the contacts in the set of contacts. The field-controlling element can be formed of a low conducting layer of material and have a lateral resistance that is both larger than an inverse of a minimal operating frequency of the device and smaller than an inverse of a maximum control frequency of the device,
Abstract:
A patterned surface for improving the growth of semiconductor layers, such as group III nitride-based semiconductor layers, is provided. The patterned surface can include a set of substantially flat top surfaces and a plurality of openings. Each substantially flat top surface can have a root mean square roughness less than approximately 0,5 nanometers, and the openings can have a characteristic size between approximately 0.1 micron and five microns.
Abstract:
An emitting device including an active region having quantum wells alternating with barriers of varying compositions is provided. The barriers can be composed of a group Ill-nitride based material, in which a molar fraction of one or more of the group III elements in two barriers adjacent to a single quantum well differ by at least one percent. Two barriers adjacent to a single quantum well can have barrier heights differing by at least one percent.
Abstract:
A solution for protecting an electronic device from an electrical surge using a mounting structure is provided. In particular, the mounting structure comprises a conductive material and is electrically connected to the protected electrical device. The conductive material and/or mounting structure can have one or more properties that prevent the mounting structure from adversely impacting operation of the electronic device during normal operation, but enables the mounting structure to provide an alternative electrical path during the electrical surge.
Abstract:
An improved solution for performing switching, routing, power limiting, and/or the like in a circuit, such as a radio frequency (RF) circuit, is provided. A semiconductor device that includes at least two electrodes, each of which forms a capacitor, such as a voltage-controlled variable capacitor, with a semiconductor channel of the device is used to perform the desired functionality in the RF circuit. The device includes electrodes that can provide high power RF functionality without the use of ohmic contacts or requiring annealin .
Abstract:
An approach for controlling ultraviolet intensity over a surface of a light sensitive object is described. Aspects involve using ultraviolet radiation with a wavelength range that includes ultraviolet-A and ultraviolet-B radiation to irradiate the surface. Light sensors measure light intensity at the surface, wherein each sensor measures light intensity in a wavelength range that corresponds to a wavelength range emitted from at least one of the sources. A controller controls the light intensity over the surface by adjusting the power of the sources as a function of the light intensity measurements. The controller uses the light intensity measurements to determine whether each source is illuminating the surface with an intensity that is within an acceptable variation with a predetermined intensity value targeted for the surface. The controller adjusts the power of the sources as a function of the variation to ensure an optimal distribution of light intensity over the surface.