LAMINATION SHAPING POWDER EVALUATION METHOD AND LAMINATION SHAPING POWDER THEREFOR

    公开(公告)号:US20200264086A1

    公开(公告)日:2020-08-20

    申请号:US16641983

    申请日:2017-08-25

    Abstract: This invention relates to a method of evaluating powder for lamination shaping by stable criteria. In this method, it is evaluated whether powder for lamination shaping can be spread into a uniform powder layer in the lamination shaping, wherein the powder is evaluated using, as a flowability of the powder, an adhesive force of the powder calculated from a failure envelope obtained by a shear test. The shear test is conducted by a powder rheometer, and the adhesive force is obtained from the relationship between a normal stress and a shearing stress at the powder rheometer. If the adhesive force is 0.450 kPa or less, the powder is evaluated to be spread into a uniform powder layer in the lamination shaping. Furthermore, if at least one of that the 50% particle sin of the powder obtained by a laser diffraction method is 3 to 250 μm and that the apparent density of the powder is 3.5 g/cm3 or more is satisfied, the powder is evaluated to be spread into a uniform powder layer in the lamination shaping.

    High-output optical attenuator, measurement device, and 3D shaping apparatus

    公开(公告)号:US10162187B2

    公开(公告)日:2018-12-25

    申请号:US14763151

    申请日:2015-03-10

    Abstract: This invention is directed to attenuating a beam output without changing the beam position and the beam diameter. A high-output optical attenuator includes a first reflector that totally reflects incident light and causes first reflected light serving as reflected light of the incident light to enter a second reflecting portion, a second reflector that reflects the first reflected light and causes second reflected light serving as reflected light of the first reflected light to enter a third reflecting portion, a third reflector that reflects the second reflected light and causes third reflected light serving as reflected light of the second reflected light to enter a fourth reflecting portion, and a fourth reflector that reflects the third reflected light as fourth reflected light having the same optical axis as the optical axis of the incident light. At least two of the second reflector, the third reflector, and the fourth reflector are half mirrors.

Patent Agency Ranking