Abstract:
In various aspects provided are methods for producing a nanoparticle within a cross-linked, collapsed polymeric material, said method including (a) providing a polymeric solution comprising a polymeric material; (b) collapsing at least a portion of the polymeric material about one or more precursor moieties; (c) cross-linking the polymeric material; (d) modifying at least a portion of said precursor moieties to form one or more nanoparticles and thereby forming a composite nanoparticle. In various embodiments, a non-confined nanoparticle can be produced by complete pyrolysis of the confined nanoparticle, and a carbon-coated nanoparticle by incomplete pyrolysis of the confined nanoparticle.
Abstract:
In various aspects provided are methods for producing a nanoparticle within a cross-linked, collapsed polymeric material, said method including (a) providing a polymeric solution comprising a polymeric material; (b) collapsing at least a portion of the polymeric material about one or more precursor moieties; (c) cross-linking the polymeric material; (d) modifying at least a portion of said precursor moieties to form one or more nanoparticles and thereby forming a composite nanoparticle. In various embodiments, a non-confined nanoparticle can be produced by complete pyrolysis of the confined nanoparticle, and a carbon-coated nanoparticle by incomplete pyrolysis of the confined nanoparticle.
Abstract:
A composition including a collapsed, polymer nanoparticle and at least one organic, neutral compound associated with the nanoparticle, wherein the nanoparticle is less than 100 nm in diameter, and the polymer comprises a water-soluble polyelectrolyte, has a molecular weight of at least about 100,000 Dalton and is cross-linked. The organic, neutral compound is selected from the group consisting of dyes, pigments, colorants, oils, UV-light absorbing molecules, fragrances, flavoring molecules, preservatives, electro-conductive compounds, thermoplastic compounds, adhesion promoters, penetration enhancers, anti-corrosive agents, and combinations thereof.
Abstract:
A composition including a collapsed, polymer nanoparticle and at least one organic, neutral compound associated with the nanoparticle, wherein the nanoparticle is less than 100 nm in diameter, and the polymer comprises a water-soluble polyelectrolyte, has a molecular weight of at least about 100,000 Dalton and is cross-linked. The organic, neutral compound is selected from the group consisting of dyes, pigments, colorants, oils, UV-light absorbing molecules, fragrances, flavoring molecules, preservatives, electro-conductive compounds, thermoplastic compounds, adhesion promoters, penetration enhancers, anti-corrosive agents, and combinations thereof.
Abstract:
The invention provides a composition comprising a polymer nanoparticle and at least one agricultural active compound associated with the polymer nanoparticle, wherein the polymer nanoparticle is less than 100 nm in diameter and is cross-linked, and wherein the polymer nanoparticle comprises a collapsed, water-soluble polyelectrolyte that has a molecular weight of at least about 100,000 Dalton.
Abstract:
The invention provides a composition comprising a polymer nanoparticle and at least one agricultural active compound associated with the polymer nanoparticle, wherein the polymer nanoparticle is less than 100 nm in diameter and is cross-linked, and wherein the polymer nanoparticle comprises a collapsed, water-soluble polyelectrolyte that has a molecular weight of at least about 100,000 Dalton.
Abstract:
The present disclosure describes a formulation including a nanoparticle including a polymer-associated strobilurin compound with an average diameter of between about 1 nm and about 500 nm; wherein the polymer is a polyelectrolyte, and a dispersant or a wetting agent. The disclosure describes various formulations and formulating agents that can be included in the formulations. Additionally, the disclosures describes application to various plants and fungi as well as advantages of the disclosed formulations.