-
公开(公告)号:CN113821929A
公开(公告)日:2021-12-21
申请号:CN202111123349.0
申请日:2021-09-24
Applicant: 中南大学
IPC: G06F30/20 , G06Q10/04 , G06Q50/26 , G06F119/12
Abstract: 本发明公开了基于时空注意力机制的高速路网站点流量预测方法及系统,通过构建目标站点的训练样本集,构建基于时空注意力机制的站点流量预测模型,并使用训练样本集中的训练数据训练站点流量预测模型,使其学习目标站点预测时刻的流量数据与其过去一段时间内的历史流量数据之间的时间依赖关系以及目标站点预测时刻的流量数据及其关键来源站点关联时刻的流量数据之间的动态空间相关性;并基于训练所得的时间依赖关系和动态空间相关性对目标站点的流量数据进行预测。本发明能捕捉目标站点的流量数据及其关键来源站点的流量数据之间的精确的动态空间相关性,并结合站点流量的时间依赖关系进行流量预测,从而提高复杂高速路网中站点流量的预测精度。
-
公开(公告)号:CN113191484A
公开(公告)日:2021-07-30
申请号:CN202110449033.4
申请日:2021-04-25
Abstract: 本发明公开了一种基于深度强化学习的联邦学习客户端智能选取方法及系统,该方法包括:联邦平台通过从联邦服务市场环境中收集客户端的状态作为输入,输入到基于策略网络的客户端选择智能体中,输出客户端选择方案;联邦平台根据当前环境状况以及客户端选择方案从多个候选客户端中选取一组最优的客户端以协同训练联邦学习模型,并将联邦学习性能作为奖励反馈给客户端选择智能体,以奖励用于优化更新策略网络;策略网络通过强化学习方法离线训练得到。本发明可从候选移动边缘设备中选择高质量的设备参与联邦学习,以处理分布式客户端低质量数据问题,以显著提高联邦学习质量。
-
公开(公告)号:CN111431743B
公开(公告)日:2021-03-02
申请号:CN202010190354.2
申请日:2020-03-18
Applicant: 中南大学
Abstract: 本发明公开了一种基于数据分析的大规模WiFi系统中边缘资源池构建方法及系统,该方法包括:采集所有用户的关联信息记录,并为每个用户提取迁移样本;通过在AP之间建立社交联系构建AP社交关系图;根据AP的中心程度和AP相互之间的紧密程度对AP社交关系图进行中心度测量,获得中心度;根据中心度对AP社交关系图的演化模式进行刻画,获得AP社交关系图的未来的社交性不确定性;根据AP社交关系图的未来的社交性不确定性,构建边缘资源池以提供高效的边缘服务,包括:联合“中心”的AP与“边缘”的AP。本发明可以提高边缘资源池构建策略的服务供给性能。
-
公开(公告)号:CN117908988B
公开(公告)日:2025-03-04
申请号:CN202410077772.9
申请日:2024-01-18
Applicant: 中南大学
IPC: G06F9/445
Abstract: 本发明公开了从服务器内存按需加载运行程序内容的方法及系统,通过客户端截获目标程序映射中引发的缺页中断,所述映射在运行到目标程序入口地址前已经建立完毕;客户端将所述缺页中断的请求发送给所述服务器,所述请求包括发生缺页的进程名称以及本次缺页的地址;服务器根据所述请求从其内存中获取对应的页面,并将所述页面返回给所述客户端。相比现有技术,本发明控制客户端按需从服务器内存加载程序运行所需的代码和数据进入本地内存,整个过程不需要消耗本地存储资源,且从服务器的内存直接获取所需代码和数据,减小数据访问延迟。
-
公开(公告)号:CN118101484B
公开(公告)日:2024-12-10
申请号:CN202410062393.2
申请日:2024-01-16
Applicant: 国网湖北省电力有限公司电力科学研究院 , 中南大学 , 国网湖北省电力有限公司神农架供电公司 , 国网湖北省电力有限公司宜昌供电公司
Abstract: 一种支撑偏远山区无人机巡检的中继网络拓扑生成方法,包括获取节点信息;设置通讯节点的约束条件;根据优化目标完成算法建模;设计覆盖拓扑生成算法;生成可视化的网络覆盖拓扑;测试拓扑的网络性能。本发明解决了在有线网络难以到达且联网设备多而乱的偏远山区环境下,构建能够满足通信要求并且成本最优化的中继网络以支撑无人机电力巡检作业的技术难题。本发明有如下优点:以生成满足具体通信需求的最优成本无线网络覆盖拓扑为总目标,实现了无人机中继网络部署,大大降低了构建覆盖拓扑的人力成本,可广泛应用在各种无人环境下的无线拓扑覆盖图谱生成场景中;成本最优化并保证无线无线网络的连通性和流畅性。
-
公开(公告)号:CN119094402A
公开(公告)日:2024-12-06
申请号:CN202411229668.3
申请日:2024-09-03
Applicant: 中南大学
IPC: H04L43/0876 , H04L43/062 , H04L43/04 , G06N3/0442 , G06N3/0475
Abstract: 本发明公开了基于深度生成对抗网络的用户移动蜂窝网络数据合成方法及系统,该方法通过构建用户多维属性合成模块、用户使用流量序列合成模块以及用户空间基站连接序列合成模块,对所述用户多维属性合成模块、用户使用流量序列合成模块、用户空间基站连接序列合成模块进行联合训练,并用训练好的用户多维属性合成模块、用户使用流量序列合成模块、用户空间基站连接序列合成模块合成数据,相比现有技术,本发明中通过将具有关联属性的三种移动网络数据分别构建数据合成模型,再将数据合成模型进行联合训练,使得训练出来的模型合成的数据不但具备数据本身的属性,还具备与其他数据的关联性,大大提高了合成数据的可靠性以及质量。
-
公开(公告)号:CN114038062B
公开(公告)日:2024-10-29
申请号:CN202111335745.X
申请日:2021-11-11
Applicant: 中南大学
Abstract: 本发明公开了一种基于联合关键点表征的考生异常行为分析方法及系统,方法包括如下步骤:S1.获取视频帧,以考生和课桌为目标进行定位,获取目标图像;S2.提取所述目标图像中所述考生的人体关键点,以及所述课桌的课桌关键点;S3.根据所述人体关键点、课桌关键点,生成抽象化特征图;通过智能神经网络对所述特征图进行识别,判断考生是否存在异常行为。具有准确性高、对考生异常行为识别效果好等优点。
-
公开(公告)号:CN116089838A
公开(公告)日:2023-05-09
申请号:CN202310184950.3
申请日:2023-03-01
Applicant: 中南大学 , 湖南能源大数据中心有限责任公司
IPC: G06F18/214 , G06F18/24 , G06F18/25 , G06N3/0442 , G06N3/0464 , G06N3/048 , G06N3/08 , G06Q30/0201 , G06Q50/06
Abstract: 本发明公开了一种窃电用户智能识别模型训练方法和识别方法,所述训练方法包括获取无标签用电数据和有标签用电数据;对用电时间序列进行预处理;由无标签用电数据的N个预处理后的用电时间序列构成第一样本数据集,由有标签用电数据的M个预处理后的用电时间序列及对应的用户类型构成第二样本数据集;构建对比表征学习模型,利用第一样本数据集对对比表征学习模型进行训练,得到目标特征编码器;构建窃电用户智能识别模型,窃电用户智能识别模型包括目标特征编码器、时频域特征提取模块以及分类计算模块;利用第二样本数据集对窃电用户智能识别模型进行训练,得到目标窃电用户智能识别模型。本发明能够提高窃电用户识别的准确性。
-
公开(公告)号:CN115619038A
公开(公告)日:2023-01-17
申请号:CN202211384461.4
申请日:2022-11-07
Applicant: 中南大学
IPC: G06Q10/04 , G06Q50/26 , G06N20/00 , G06F18/214 , G06F18/211
Abstract: 本发明涉及大数据领域,公开一种基于数据驱动的高速路网拥堵预测与成因分析方法及系统,以提高拥堵预测精度及拥堵成因解释性。方法包括:创建高速站点之间的路段连接关系,对待分析的高速路段的第一数据集进行预处理,采用归一化处理连续数据中站点在各个时刻的进出站流量数据和路段拥堵数据,并采用独热编码将类别数据中用于将各个时刻对应一周中的第几天、第二天是否为节假日、当天是否为节假日、一天中的第几个小时的时间特征转换为嵌入向量;通过信息增益方法从第一数据集中筛选出信息增益前K个特征构建第二数据集;基于极端梯度提升树对第二数据集中的数据进行路段拥堵预测;通过SHAP方法分析得出各个路段交通情况所受的影响因素。
-
公开(公告)号:CN114048040B
公开(公告)日:2022-05-13
申请号:CN202111431501.1
申请日:2021-11-29
Applicant: 中南大学
IPC: G06F9/50 , G06F9/455 , G06V10/96 , G06V10/94 , G06V10/776 , G06V10/764 , G06K9/62
Abstract: 本发明公开了一种基于内存与图像分类模型时延关系的任务调度方法,目的是解决用户图像分类任务时延要求,并使得内存资源负载均衡。技术方案是构建由环境部署模块、测试模块、拟合模块以及任务调度模块四个模块组成的内存与图像分类模型时延关系的任务调度系统;测试模块测出不同内存下各预训练好的图像分类模型的时延结果;拟合模块根据时延结果拟合出内存与图像分类模型时延的函数关系。任务调度模块根据该函数关系及用户时延要求算出图像分类任务内存需求量,再根据虚拟机的剩余内存资源设定优先级,基于优先级将任务调度至优先级最高的虚拟机上运行,使在满足用户图像分类任务时延要求的同时,数据中心的内存资源整体达到负载均衡。
-
-
-
-
-
-
-
-
-