-
公开(公告)号:CN105489881A
公开(公告)日:2016-04-13
申请号:CN201610017264.7
申请日:2016-01-12
Applicant: 哈尔滨工业大学
IPC: H01M4/505 , H01M4/525 , H01M4/131 , H01M10/0525
CPC classification number: H01M4/505 , H01M4/131 , H01M4/525 , H01M10/0525 , H01M2004/028
Abstract: 本发明公开了一种提高锂离子电池三元镍钴锰正极材料振实密度的方法,其步骤为:一、筛分大中小三种粒径三元材料前驱体NixCoyMnz(OH)2;二、将步骤一筛分好的三元材料前驱体分别与锂盐进行球磨湿混焙烧,得到大中小三种粒径的三元镍钴锰正极材料;三、将步骤二得到的大粒径三元镍钴锰正极材料与中粒径和/或小粒径三元镍钴锰正极材料混合后进行二次低温焙烧,得到高振实密度三元镍钴锰正极材料。本发明可提高锂离子电池三元镍钴锰正极材料的振实密度和体积比能量,在保证材料在循环过程中稳定性基础上,提高材料克容量,改善倍率性能。
-
公开(公告)号:CN103811748B
公开(公告)日:2016-02-24
申请号:CN201410081413.7
申请日:2014-03-07
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种核壳结构的锂离子电池正极材料及其制备方法,所述锂离子电池正极材料为核壳结构,其核层材料为LiNi0.5Mn1.5-xNxO4,其中x为0.002~0.12,N=Mo或Cr,壳层材料为LiNi0.5Mn1.5O4,壳层材料占核层材料的质量分数为2~20%。其制备方法为:通过共沉淀法制备核壳结构的前驱体,然后经高温煅烧和退火处理制备核壳结构的锂离子电池正极材料。该材料中核层材料通过掺杂高价态元素,使部分锰的化学价由正四价降为正三价,三价锰的存在提高了材料的倍率性能,壳层材料不含Mn3+,避免了三价锰引起的锰的溶解问题,提高了材料循环性能。
-
公开(公告)号:CN104617306A
公开(公告)日:2015-05-13
申请号:CN201510022539.1
申请日:2015-01-17
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种质子交换膜燃料电池铂基催化剂载体及其制备方法。所述铂基催化剂载体为g-C3N4纳米片/类石墨烯碳复合材料,其制备方法如下:一、称取g-C3N4前驱体和无机盐,混合均匀得到混合物A;二、将混合物A半密封放入管式炉氮气气氛中,升温至500~700℃并保持1~5h,得到材料B;三、将材料B研磨后用超纯水洗涤过滤,真空干燥得到块状g-C3N4材料C;四、将g-C3N4材料加入到浓酸中,超声搅拌后用超纯水洗涤至pH呈中性,离心干燥得到g-C3N4纳米片;五、称取g-C3N4纳米片与类石墨烯碳加入醇溶液中,超声分散,抽滤并冷冻干燥得到复合材料。本制备方法简单可行,有望降低铂基催化剂贵金属载量,从而降低燃料电池生产成本。
-
公开(公告)号:CN104157831A
公开(公告)日:2014-11-19
申请号:CN201410409800.9
申请日:2014-08-19
Applicant: 哈尔滨工业大学
IPC: H01M4/131 , H01M4/1391
Abstract: 一种核壳结构的尖晶石镍锰酸锂、层状富锂锰基复合正极材料及其制备方法,属于材料合成技术领域。本发明制备的锂离子复合正极材料以层状富锂锰基Li[Lia(NixCoyMnz)1-a]O2为内核材料,以尖晶石镍锰酸锂LiNi0.5Mn1.5O4为壳层材料;采用共沉淀的方法获得核壳前驱体,利用核壳前驱体与锂源进行均匀混合、煅烧,得到核壳结构的尖晶石镍锰酸锂、层状富锂锰基复合正极材料。本发明分别以层状富锂锰基与尖晶石镍锰酸锂为内核与壳层材料,可在不牺牲材料克容量的前提下,提高材料结构稳定性,改善材料循环、倍率与安全性能,实现了内核材料与壳层材料的功能复合与互补,解决了大容量与高安全性不可兼得的难题。本发明工艺简单、性能提升明显可靠。
-
公开(公告)号:CN102694177B
公开(公告)日:2014-04-09
申请号:CN201210163712.6
申请日:2012-05-24
Applicant: 哈尔滨工业大学
Abstract: 碳包覆钛酸锂/碳纳米管复合物的制备方法,它属于锂离子电池负极材料领域。本发明要解决现有Li4Ti5O12比容量和循环性能差的技术问题。方法如下:一、将碳纳米管和易水解的含钛化合物加入醇水溶液中,搅拌至形成乳状液,稀释,喷雾干燥;二、再与可溶性锂盐一起球磨,惰性气氛下烧结,获得前驱体;三、将步骤二获得的前驱体与碳源混匀,在惰性气氛下烧结;即得到碳包覆钛酸锂/碳纳米管复合物。本发明获得产品用作锂离子电池负极材料。
-
公开(公告)号:CN103682315A
公开(公告)日:2014-03-26
申请号:CN201310711939.4
申请日:2013-12-20
Applicant: 哈尔滨工业大学
CPC classification number: H01M4/505 , C01G45/1257
Abstract: 高容量、长寿命锂离子电池锰酸锂正极材料的制备方法,属于材料合成技术领域。所述方法为:一、称取锂源、锰盐和掺杂微量金属元素均匀混合,在400~600℃下预烧2~6h,再在700~1000℃下煅烧6~16h,分级除去细小颗粒,磁性吸附金属离子后得到锰酸锂或一次掺杂锰酸锂;二、将步骤一得到的锰酸锂或一次掺杂锰酸锂二次掺入锂源,均匀混合;三、将混合物在600~850℃下煅烧3~8h,得到一次或二次掺杂煅烧锰酸锂材料。本发明通过二次引入活性物质有效提高Li+的扩散速率,减少不可逆容量损失,从而提高正极材料的可逆比容量和循环稳定性。本发明工艺简单、高温性能提升明显可靠,制备的锰酸锂材料具有较高的容量与优异的高温循环性能。
-
公开(公告)号:CN103490059A
公开(公告)日:2014-01-01
申请号:CN201310469869.6
申请日:2013-10-11
Applicant: 哈尔滨工业大学
Abstract: 多孔形貌高电压镍锰酸锂正极材料的制备方法,属于材料合成技术领域。所述方法如下:将锰盐在200~800℃下煅烧3~10h,得到多孔的锰氧化物A;按摩尔比Li:Ni:Mn=1~1.1:0.5:1.5称取锂源、镍源和锰氧化物A,混合得到前驱体;将前驱体放入马弗炉空气气氛中,在300~500℃下预烧3~8h,然后升温至700~1000℃煅烧8~20h,得到镍锰酸锂材料。本发明制备的镍锰酸锂材料颗粒为多孔结构,形貌可控。多孔的镍锰酸锂中的孔隙可缓冲由锂脱嵌引起的结构应力和体积变化,提高循环性能,并且缩短锂离子传输距离,增大电极和电解液的接触面积,提高倍率性能,从而具有优异的倍率性能和循环性能。
-
公开(公告)号:CN103191727A
公开(公告)日:2013-07-10
申请号:CN201310123093.2
申请日:2013-04-10
Applicant: 哈尔滨工业大学
Abstract: 一种燃料电池用高稳定性,高活性碳载Pt基催化剂的制备方法,它涉及电化学领域,尤其是涉及一种燃料电池用高稳定性,高活性碳载Pt基催化剂的制备方法,它为解决现有燃料电池中所用催化剂稳定性不高、催化活性不高、循环稳定性差以及制备过程不易,耗能较大及环境污染的问题,制备方法如下:一、碳载体的前处理;二、碳载体上碳氮杂环结构的引入;三、碳载Pt基催化剂的制备。本发明的催化剂粒径为1~2nm分散性好,活性高且稳定性好,电化学活性面积为88m2/gPt,老化1000圈变化12%,在0.8V(vs.RHE)时氧化还原反应活性ik为356A/gPt,老化1000圈变化4%,循环稳定性高,可应用于电化学领域。
-
公开(公告)号:CN102315464B
公开(公告)日:2013-06-05
申请号:CN201110244444.6
申请日:2011-08-25
Applicant: 哈尔滨工业大学
Abstract: 阳极双通道进料直接二甲醚燃料电池及其产电的方法,它属于燃料电池领域。本发明解决现有单一液体燃料进料的直接二甲醚燃料电池存在阳极二甲醚进量不足及单一气体进料的直接二甲醚燃料电池存在加湿不足的技术问题。本发明阳极流场板同时设有液体流道和气体流道。本发明以1~100mL/min流速将水或二甲醚溶液通入液体流道,同时以10~500mL/min流速将二甲醚气体通入气体通道,二甲醚在压力作用下进入扩散层,然后达液体流道,再经由出液口和出液管排出,处于溶液中的二甲醚以及气体二甲醚在常压及反应温度为20~100℃条件下进行电化学反应输出电流,即完成了阳极双通道进料直接二甲醚燃料电池的产电。本发明用于产电。
-
公开(公告)号:CN101937999B
公开(公告)日:2013-06-05
申请号:CN201010276961.7
申请日:2010-09-09
Applicant: 哈尔滨工业大学
Abstract: 二元合金担载型多孔空心球结构直接醇类燃料电池催化剂的制备方法,涉及直接醇类燃料电池催化剂的制备方法。本发明解决了现有直接醇类燃料电池催化剂性能衰降的机理中存在的纳米级催化剂Pt粒子中毒、醇类燃料传输受阻及催化剂制备成本高的问题。方法:将以表面活性剂作为模板,根据表面活性剂和金属前驱体盐的带电荷不同,以静电自组装形式形成不同吸附层的多孔空心球结构担载型二元合金催化剂。本发明方法制备催化剂有利于醇类燃料传输,而且具有成本低、产品抗毒化性强、活性高、稳定性高的优点。本发明产品主要用于甲醇燃料电池的催化剂。
-
-
-
-
-
-
-
-
-