基于多目标量子萤火虫搜索机制的频谱感知方法

    公开(公告)号:CN106257849A

    公开(公告)日:2016-12-28

    申请号:CN201610821207.4

    申请日:2016-09-13

    CPC classification number: H04B17/382 H04B17/3911

    Abstract: 本发明提供的是一种基于多目标量子萤火虫搜索机制的频谱感知方法。建立多目标频谱感知模型,确定搜索方法的参数。确定需要求解的多目标适应度函数形式。种群中的量子萤火虫的量子位置根据其适应度值进行非支配量子位置排序,非支配等级为1的量子萤火虫的量子位置放入精英量子位置集中。使用量子编码机制和量子演化行为更新量子萤火虫的量子位置,选择非支配量子位置,更新精英量子位置集。根据最终的Pareto前端量子位置集,认知无线电系统根据对最大化检测概率和最小化虚警概率的不同的需要选取相应的量子位置。本发明可解决多目标频谱感知这个技术难题,能应用在现有认知无线电频谱感知方法所不能应用的一些场景。

    一种基于量子萤火虫搜索机制的天线阵稀疏构建方法

    公开(公告)号:CN104102791A

    公开(公告)日:2014-10-15

    申请号:CN201410374447.5

    申请日:2014-08-01

    Abstract: 本发明涉及一种基于量子萤火虫搜索机制的天线阵稀疏构建方法:建立天线稀疏阵模型,确定天线阵稀疏对应量子萤火虫搜索机制的关键参数;把量子萤火虫位置带入适应度函数,得到量子萤火虫所在位置的适应度值,确定局部最优位置和量子萤火虫群体中的全局最优位置;更新每只量子萤火虫的荧光素值,更新每只量子萤火虫的学习邻域;更新量子萤火虫量子位置和量子萤火虫位置;更新量子萤火虫动态决策域半径;计算量子萤火虫新位置下的适应度值,重新确定局部最优位置和量子萤火虫群体中的全局最优位置;如果达到最大迭代次数,输出全局最优位置,映射为一种稀疏天线阵的形式。

    一种强冲击噪声下相干分布源动态跟踪方法

    公开(公告)号:CN113378103B

    公开(公告)日:2023-05-05

    申请号:CN202110611610.5

    申请日:2021-06-02

    Abstract: 发明公开了一种强冲击噪声下相干分布源动态跟踪方法,具体是在强冲击噪声下设计了一种加权范数分数低阶相关矩阵,在此基础上设计基于加权范数低阶相关矩阵的极大似然动态跟踪方法进行相干分布源动态跟踪,并通过量子标杆学习机制快速得到跟踪结果。本发明设计了更具鲁棒性的基于量子标杆学习机制的相干分布源动态跟踪方法,在强冲击噪声下设计了加权范数分数低阶相关矩阵,并利用极大似然跟踪方法实现了动态跟踪。设计了加权范数分数低阶相关矩阵,能够分辨相干信源,在强冲击噪声下实现了对动态目标的有效跟踪,设计的量子标杆学习机制可以对加权范数分数低阶相关矩阵极大似然方程进行高精度求解,快速准确的得到跟踪结果。

    一种基于量子郊狼优化机制的多无人机协同任务分配方法

    公开(公告)号:CN115562336A

    公开(公告)日:2023-01-03

    申请号:CN202211218923.5

    申请日:2022-10-07

    Abstract: 本发明提供了一种基于量子郊狼优化机制的多无人机协同任务分配方法,在原有任务时间、任务时序、机载性能和多机协同的要求下额外考虑三维场景和时间同步约束,并构建相应集中式多无人机协同任务分配模型及效能函数。为高效求解任务分配方案,本发明设计了量子郊狼优化机制,其受启发于北美郊狼群的社会组织性和环境适应性,仿生于郊狼成长、生死以及被驱逐或接纳等现象,并使用模拟量子旋转门来演化量子郊狼量子态,收敛速度快、收敛精度高。本发明所提方法可在三维场景和时间同步等约束下为编队各机分配合理任务目标,可应用于工程实际。

    一种时频DOA估计方法
    56.
    发明授权

    公开(公告)号:CN110046326B

    公开(公告)日:2022-09-27

    申请号:CN201910349676.4

    申请日:2019-04-28

    Abstract: 本发明公开一种时频DOA估计方法,包括:建立阵列接收的时域数据模型;对时域数据进行快拍采样;对快拍采样数据进行时频分析得到PWVD矩阵;计算时频平均的快拍采样数据PWVD矩阵;构造极大似然方程;初始化量子地雷量子位置;由极大似然方程构造适应度函数;模拟量子地雷爆炸过程获得量子弹片的量子位置;计算量子弹片量子位置映射态的适应度函数值,选择适应度大的优秀量子位置作为放置量子地雷的量子位置,用于引爆下一代的量子地雷,根据所有量子位置的适应度更新全局最优量子位置;达到最大迭代次数后,输出信号方位角最优估计值,本发明能在较短时间内得到较准确的非平稳信号DOA估计结果,并且在信号源为相干源的条件下仍有效。

    冲击噪声环境下的单快拍测向方法

    公开(公告)号:CN109683128B

    公开(公告)日:2022-04-29

    申请号:CN201910103535.4

    申请日:2019-02-01

    Abstract: 本发明涉及一种冲击噪声环境下的单快拍测向方法,包括建立均匀线阵单快拍采样信号模型;构造基于高斯核的无穷范数协方差矩阵,获得基于高斯核的无穷范数单快拍极大似然方程;初始化非洲水牛种群;计算每头水牛位置适应度,记录每头水牛局部最优位置和整个非洲水牛群全局最优位置;更新水牛位置和水牛交流位置,产生斐波那契权重;利用斐波那契搜索策略更新每头水牛局部最优位置;计算每头水牛所在新位置的适应度,确定每头水牛的局部最优位置和非洲水牛群的全局最优位置;输出的非洲水牛群全局最优位置即为来波方向估计值。本发明在强冲击噪声等复杂环境下仅对单个快拍数据进行处理,降低DOA估计运算量,实现对接收信号波达方向有效估计。

    基于量子海鞘群的无线信道衰减模型拟合方法

    公开(公告)号:CN109829237B

    公开(公告)日:2022-04-05

    申请号:CN201910103520.8

    申请日:2019-02-01

    Abstract: 本发明涉及一种基于量子海鞘群的无线信道衰减模型拟合方法,具体为:设置Nakagami‑m分布的参数并获取Nakagami‑m逆累积分布的准确数据集;初始化海鞘群的量子位置及位置;对所有海鞘位置进行适应度评价,并确定食物的量子位置与位置;根据策略一或策略二依次更新选定的海鞘的量子旋转角、量子位置与位置;依次对选定的海鞘按照策略三更新量子旋转角、量子位置与位置;对所有海鞘位置进行适应度评价,并更新食物的量子位置与位置;最终输出的食物位置即为拟合方程的最佳系数,即可得到Nakagami‑m逆累积分布函数的最佳拟合方程。本发明具有更高的拟合精度、更快的拟合速度以及更广的适用范围。

    一种自供能无线传感器网络最优节点放置方法

    公开(公告)号:CN109041073B

    公开(公告)日:2022-03-18

    申请号:CN201811017286.9

    申请日:2018-09-01

    Abstract: 本发明涉及无线传感器网络领域,具体涉及一种自供能无线传感器网络最优节点放置方法。首先建立网络模型,将监测区域建立于二维的栅格之中,构建NP问题模型,最小化集合覆盖问题,然后初始化量子猴群,对于量子猴子,从三种量子演化机制依概率选择一种进行演化更新位置,确定每次迭代中,量子猴子的量子位的量子演进方式,之后更新量子猴群中猴子位置,并判断对应的传感器节点所放位置是否能将所有目标节点覆盖,更新每只量子猴子至今为止的局部最优位置,找到全局最优位置作为下一迭代量子位的共同演进方向,最终当前迭代次数达到预先设定的最大值。本发明能够保证网络的能量中立及目标的覆盖与连接性,同时使得传感器节点放置的数量最小化。

    量子根树机制演化极限学习机的调制信号识别方法

    公开(公告)号:CN114172770A

    公开(公告)日:2022-03-11

    申请号:CN202111423647.1

    申请日:2021-11-26

    Abstract: 本发明提供一种量子根树机制演化极限学习机的调制信号识别方法,利用加权Myriad滤波器抑制冲击噪声,提出一种量子根树机制进行高效求解,突破了现有基于演化极限学习机的调制信号识别方法的一些应用局限。本发明设计的量子根树机制演化极限学习机的调制信号识别方法设计了量子根树机制,能对冲击噪声下的极限学习机权值和阈值进行高精度求解,有效提高调制识别率。仿真实验证明了冲击噪声下量子根树机制演化极限学习机的调制信号识别方法的有效性,突破了传统方法在冲击噪声和低信噪比环境下性能恶化甚至失效的应用局限,相对于传统方法识别率大幅提高。

Patent Agency Ranking