Abstract:
At least some aspects of the present disclosure feature a waveguide for propagating an electromagnetic wave. The waveguide includes a base material and a plurality of resonators disposed in a pattern, the plurality of resonators having a resonance frequency. Each of the plurality of resonators has a relative permittivity greater than a relative permittivity of the base material. At least two of the plurality of resonators are spaced according to a lattice constant that defines a distance between a center of a first one of the resonators and a center of a neighboring second one of the resonators.
Abstract:
Polymer composites that are suitable for use as electromagnetic interference mitigaters include a lossy polymeric matrix, ceramic particles dispersed within the polymeric matrix, and conductive particles dispersed within the polymeric matrix. The lossy polymeric matrix may be a fluorocarbon-based polymer matrix, or an epoxy-based polymer matrix. The ceramic particles may be metal oxide particles, especially copper oxide (CuO) particles. The conductive particles may be carbon black. Other electromagnetic interference mitigating polymer matrices include a lossy polymeric matrix and copper oxide (CuO) particles dispersed within the polymeric matrix.