Abstract:
In some implementations, a mobile device can be configured to monitor environmental, system and user events. The occurrence of one or more events can trigger adjustments to system settings. In some implementations, the mobile device can be configured to keep frequently invoked applications up to date based on a forecast of predicted invocations by the user. In some implementations, the mobile device can receive push notifications associated with applications that indicate that new content is available for the applications to download. The mobile device can launch the applications associated with the push notifications in the background and download the new content. In some implementations, before running an application or accessing a network interface, the mobile device can be configured to check energy and data budgets and environmental conditions of the mobile device to preserve a high quality user experience.
Abstract:
In some implementations, a network daemon can manage access to a mobile device's network interface. The network daemon (e.g., network connection managing process) can monitor the condition of the mobile device's network connection on one or more interfaces. The network daemon can monitor many conditions on the mobile device. The network daemon can receive background networking requests from network clients (e.g., processes, applications) that specify criteria for initiating a network connection. The network daemon can then smartly manage network connections taking into account network conditions, mobile device conditions and/or client criteria received in the client request. This can help reduce battery life impact, memory usage, likelihood of call drops, data usage cost, and load on network operators.
Abstract:
Computer-implemented methods, computer-readable media, and computer systems for managing power consumption in mobile devices are described. A mobile computer system executes a first computer application configured to receive data from a server system over a network, and a second computer application configured to periodically search for a connection to the network at a first time interval. In response to executing the second computer application, the mobile computer system determines that a strength of the connection is below a threshold strength. In response to determining that the strength of the connection is below the threshold strength, the mobile computer system executes the first computer application to delay requesting data from the server system until the connection to the network is detected.
Abstract:
The disclosed embodiments provide a system that processes incoming network packets to an electronic device. The system includes an analysis apparatus that maintains a list of accepted incoming packet attributes for the electronic device based on outgoing packets from the electronic device. The system also includes a management apparatus that uses the list to classify an incoming packet to the electronic device as a solicited incoming packet or an unsolicited incoming packet. If the incoming packet is classified as the solicited incoming packet, the management apparatus enables subsequent processing of the incoming packet on the electronic device. If the incoming packet is classified as the unsolicited incoming packet, the management apparatus adjusts a triggering of radio dormancy in the electronic device based on the incoming packet.