Abstract:
A display is provided that has upper and lower polarizers, a color filter layer, a liquid crystal layer, and a thin-film transistor layer. The color filter layer and thin-film transistor layer may be formed from materials such as glass that are subject to stress-induced birefringence. To reduce light leakage that reduces display performance, one or more birefringence compensation layers may be incorporated into the display to help compensate for any birefringence effects. The compensation layers may include a birefringence compensation layer attached to the color filter layer or the thin-film transistor layer. A display may include an upper compensation layer attached to the color filter layer and a lower compensation layer attached to the thin-film transistor layer. The compensation layer may be formed from glass or polymer materials that have a negative photo-elastic constant.
Abstract:
Display layers in an electronic device may be used to generate images. The display layers may include liquid crystal display layers such as upper and lower polarizers and a layer of liquid crystal material. A display cover layer may be mounted in a housing using adhesive. A touch sensor layer may be mounted under the display cover layer. An air gap may separate the upper polarizer from the touch sensor layer and display cover layer. Antireflection coatings may be formed on the lower surface of the display cover layer or touch sensor layer and may be formed on the upper surface of the upper polarizer. The antireflection coatings may include coatings formed from a polymer hard coat covered with a polymer layer having a different index of refraction and may include broadband antireflection coating material formed from textured polymer or other structure exhibiting a continuously varying index of refraction.
Abstract:
An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the spectral characteristics of display light emitted from the display to achieve a desired effect on the human circadian system. For example, the display control circuitry may adjust the spectral characteristics of blue light emitted from the display based on the time of day such that a user' s exposure to the display light may result in a circadian response similar to that which would be experienced in natural light. The spectral characteristics of blue light emitted from the display may be adjusted by adjusting the relative maximum power levels provided to blue pixels in the display or by shifting the peak wavelength associated with blue light emitted from the display.
Abstract:
A display may be provided with a color filter layer. The display may have a thin-film transistor layer and a layer of liquid crystal material that is interposed between the color filter layer and the thin-film transistor layer. The color filter layer may include an array of color filter elements on a transparent substrate. The color filter elements may be formed from colored photoresist. An inorganic layer may be deposited on the color filter elements. An opaque matrix such a black matrix formed from black photoresist may be formed on the inorganic layer. The color photoresist color filter elements may be rectangular and may be arranged on the transparent substrate in a rectangular array. The black matrix may contain an array of rectangular openings. Each of the openings of the black matrix may be aligned with a corresponding one of the color filter elements.
Abstract:
Displays such as liquid crystal displays may be provided with structures that minimize curtain mura. A display may have upper (22) and lower (24) polarizers. A color filter layer (12) and a thin film transistor layer (14) may be located between the upper and lower polarizers. A liquid crystal layer (16) may be interposed between the color filter layer and the thin film transistor layer. A first optical film layer (18) that includes a birefringent compensating layer (62) may be located between the upper polarizer and the color filter layer. A second optical film layer (20) that is devoid of birefringent compensating layers may be located between the thin film transistor layer and the lower polarizer. A grid of metal signal lines (66) may be used to distribute signals to thin film transistors on the thin film transistor layer. A black mask (68) may be interposed between the grid of signal lines and the thin film transistor layer.
Abstract:
Devices and methods related to high-contrast liquid crystal displays (LCDs) are provided. For example, such an electronic device may include an LCD with two liquid crystal alignment layers not symmetric to one another and upper and lower polarizing layers respectively above and below the alignment layers. Light transmittance through the plurality of pixels may increase monotonically with gray scale voltage. The display may operate using a gray scale level 0 voltage higher than a minimum gray scale level 0 voltage capability of the display. Additionally or alternatively, liquid crystal molecular alignment axes of the two alignment layers may be offset from one another by an angle other than a multiple of 180 degrees. Additionally or alternatively, a first polarizing axis of the upper polarizing layer or a second polarizing axis of the lower polarizing layer, or both, may be neither parallel nor perpendicular to one of the liquid crystal molecular alignment axes.
Abstract:
A liquid crystal display may have upper and lower polarizers (22, 24). A color filter layer (12) and a thin film transistor layer (14) may be located between the upper and lower polarizers. A liquid crystal layer (16) may be interposed between the color filter layer and the thin film transistor layer. A first optical film layer (18) that includes a birefringent compensating layer (62) may be located between the upper polarizer and the color filter layer. A second optical film layer (20) that may be devoid of birefringent compensating layers may be located between the thin film transistor layer and the lower polarizer. A grid of metal signal lines (66) may be used to distribute signals to thin film transistors on the thin film transistor layer. A black mask (68) may be interposed between the grid of signal lines and the thin film transistor layer.