Abstract:
A multifunction device with a touch-sensitive display: plays a first piece of content in a full-size mode on the display at a predefined aspect ratio; while playing the first piece of content on the display in the full-size mode, detects a first gesture on the display; and, in response to detecting the first gesture: shrinks the playing of the first piece of content to a first region of the display while keeping the predefined aspect ratio and displays information related to the first piece of content in a second region of the display.
Abstract:
The present disclosure generally relates to user interfaces and techniques for managing audio exposure using a computer system (e.g., an electronic device). In accordance with some embodiments, the electronic device displays a graphical indication of a noise exposure level over a first period of time with an area of the graphical indication that is colored to represent the noise exposure level, the color of the area transitioning from a first color to a second color when the noise exposure level exceeds a first threshold. In accordance with some embodiments, the electronic device displays noise exposure levels attributable to a first output device type and a second output device type and, in response to selecting a filtering affordance, visually distinguishes a set of noise exposure levels attributable to the second output device type.
Abstract:
The present disclosure relates to user interfaces for receiving user input. Some techniques for receiving user input using electronic devices, however, are generally cumbersome and inefficient. For example, composing or preparing a response to a message requires navigating a complex and time-consuming user interface, which may include multiple key presses or keystrokes. Existing techniques require longer than necessary, wasting user time and device energy. This latter consideration is particularly important in battery-operated devices. Accordingly, there is a need for electronic devices with faster, more efficient methods and interfaces for receiving user input. Such methods and interfaces optionally complement or replace conventional methods for receiving user input. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated computing devices, such methods and interfaces conserve power and increase the time between battery charges. The above deficiencies and other problems associated with user interfaces for computing devices for receiving user input are reduced or eliminated by the disclosed devices.
Abstract:
The present disclosure generally relates to user interfaces and techniques for managing audio exposure using a computer system (e.g., an electronic device). In accordance with some embodiments, the electronic device displays a graphical indication of a noise exposure level over a first period of time with an area of the graphical indication that is colored to represent the noise exposure level, the color of the area transitioning from a first color to a second color when the noise exposure level exceeds a first threshold. In accordance with some embodiments, the electronic device displays noise exposure levels attributable to a first output device type and a second output device type and, in response to selecting a filtering affordance, visually distinguishes a set of noise exposure levels attributable to the second output device type.
Abstract:
The present disclosure generally relates to mail application features. In some embodiments, a contact identifier is selected. In some embodiments, an adaptive toolbar is provided. In some embodiments, document functions are accessed.