Abstract:
A user content audio signal is converted into sound that is delivered into an ear canal of a wearer of an in-ear speaker, while the in-ear speaker is sealing off the ear canal against ambient sound leakage. An acoustic or venting valve in the in-ear speaker is automatically signaled to open, so that sound inside the ear canal is allowed to travel out into an ambient environment through the valve, while activating conversion of an ambient content audio signal into sound for delivery into the ear canal. Both user content and ambient content are heard by the wearer. The ambient content audio signal is digitally processed so that certain frequency components have been gain adjusted, based on an equalization profile, so as to compensate for some of the insertion loss that is due to the in-ear speaker blocking the ear canal. Other embodiments are also described and claimed.
Abstract:
A user content audio signal is converted into sound that is delivered into an ear canal of a wearer of an in-ear speaker, while the in-ear speaker is sealing off the ear canal against ambient sound leakage. An acoustic or venting valve in the in-ear speaker is automatically signaled to open, so that sound inside the ear canal is allowed to travel out into an ambient environment through the valve, while activating conversion of an ambient content audio signal into sound for delivery into the ear canal. Both user content and ambient content are heard by the wearer. The ambient content audio signal is digitally processed so that certain frequency components have been gain adjusted, based on an equalization profile, so as to compensate for some of the insertion loss that is due to the in-ear speaker blocking the ear canal. Other embodiments are also described and claimed.
Abstract:
A balanced armature (“BA”) based valve is described. The valve includes a motor having a coil assembly and a magnetic system, an armature extending through or being located adjacent to the motor, a drive pin coupled to the armature, and a valve flap of a membrane having a hole therein. The valve flap is actuated by the drive pin into open and closed positions, in response to respective motions of the armature. A housing contains the motor, the armature, the drive pin, and the membrane. In one embodiment, the membrane is attached to the housing and divides the housing into an upper space and a lower space, and there is airflow through the hole, between the upper space and the lower space, only when the valve flap is open. A first spout of the housing may deliver sound generated by an acoustic driver in the housing into a wearer's ear canal, and is also open to the upper space. A second spout of the housing is open to the bottom space and to an ambient environment. Other embodiments are also described.
Abstract:
Headphone eartips with internal support components and methods for making the same are provided. At least one support component may provide specific amounts and types of rigidity at specific portions of an inner eartip body defining an inner eartip space that transmits sound to an eardrum when an eartip subassembly is positioned within an ear canal, such that the eartip subassembly may ensure an effective sound path while also at least partially conforming to various ear canal geometries.
Abstract:
This application relates to earbuds configured with one or more biometric sensors. At least one of the biometric sensors is configured to be pressed up against a portion of the tragus for making biometric measurements. In some embodiments, the housing of the earbud can be symmetric so that the earbud can be worn interchangeably in either a left or a right ear of a user. In such an embodiment, the earbud can include a sensor and circuitry configured to determine and alter operation of the earbud in accordance to which ear the earbud is determined to be positioned within.
Abstract:
Intra-canal earphones and methods of manufacturing intra-canal earphones are disclosed. In an embodiment, an intra-canal earphone includes a rigid housing in which a driver is located, a rigid nozzle, and a resilient joint that physically couples the housing with the nozzle and acoustically couples the driver with the nozzle. Other embodiments are also described and claimed.