METHODS OF REMOVING METAL OXIDE USING CLEANING PLASMA

    公开(公告)号:US20240167148A1

    公开(公告)日:2024-05-23

    申请号:US17989767

    申请日:2022-11-18

    CPC classification number: C23C16/0227 B08B7/0035 C23C16/06

    Abstract: Embodiments of the disclosure are directed to methods of removing metal oxide from a substrate surface by exposing the substrate surface to an un-biased cleaning plasma comprising a mixture of hydrogen (H2) and oxygen (O2). In some embodiments, the substrate surface has at least one feature thereon, the at least one feature defining a trench having a top surface, a bottom surface, and two opposed sidewalls. The un-biased cleaning plasma comprises in a range of from 1% to 20% oxygen (O2) on a molecular basis and greater than or equal to 80% hydrogen (H2). The un-biased cleaning plasma removes substantially all of the metal oxide—such as molybdenum oxide (MoOx), ruthenium oxide (RuOx), or tungsten oxide (WOx)—from the substrate surface, and the top surface, the bottom surface, and the two opposed sidewalls of the trench without damaging the dielectric and/or critical dimension (CD)/profile of the structure.

    Methods for treating magnesium oxide film

    公开(公告)号:US11489110B2

    公开(公告)日:2022-11-01

    申请号:US16845600

    申请日:2020-04-10

    Abstract: A method of forming a tunnel layer of a magnetoresistive random-access memory (MRAM) structure includes forming a first magnesium oxide (MgO) layer by sputtering an MgO target using radio frequency (RF) power, exposing the first MgO layer to oxygen for approximately 5 seconds to approximately 20 seconds at a flow rate of approximately 10 sccm to approximately 15 sccm, and forming a second MgO layer on the first MgO layer by sputtering the MgO target using RF power. The method may be performed after periodic maintenance of a process chamber to increase the tunnel magnetoresistance (TMR) of the tunnel layer.

    Magnetic tunnel junctions with coupling-pinning layer lattice matching

    公开(公告)号:US10957849B2

    公开(公告)日:2021-03-23

    申请号:US16358475

    申请日:2019-03-19

    Abstract: Embodiments of magnetic tunnel junction (MTJ) structures discussed herein employ a first pinning layer and a second pinning layer with a synthetic anti-ferrimagnetic layer disposed therebetween. The first pinning layer in contact with the seed layer can contain a single layer of platinum or palladium, alone or in combination with one or more bilayers of cobalt and platinum (Pt), nickel (Ni), or palladium (Pd), or combinations or alloys thereof, The first pinning layer and the second pinning layer can have a different composition or configuration such that the first pinning layer has a higher magnetic material content than the second pinning layer and/or is thicker than the second pinning layer. The MTJ stacks discussed herein maintain desirable magnetic properties subsequent to high temperature annealing.

    Plasma chamber target for reducing defects in workpiece during dielectric sputtering

    公开(公告)号:US10704139B2

    公开(公告)日:2020-07-07

    申请号:US15482242

    申请日:2017-04-07

    Abstract: Methods and apparatus for reducing defects in a workpiece are provided herein. In some embodiments, a sputter deposition target is provided for reducing defects in a workpiece, the target comprising a dielectric compound having a predefined average grain size ranging from approximately 20 μm to 200 μm. In other embodiments, a process chamber is provided, the process chamber comprising a chamber body defining an interior volume, a substrate support to support a substrate within the interior volume, a plurality of targets to be sputtered onto the substrate including at least one dielectric target, wherein the dielectric target comprises a dielectric compound having a predefined average grain size ranging from approximately 20 μm to 200 μm and a shield rotatably coupled to an upper portion of the chamber body and having at least one hole to expose at least one of the plurality of targets to be sputtered.

    Methods and apparatus for processing a substrate

    公开(公告)号:US10431440B2

    公开(公告)日:2019-10-01

    申请号:US14975793

    申请日:2015-12-20

    Abstract: Methods and apparatus for processing a substrate are disclosed herein. In some embodiments, a process chamber includes: a chamber body defining an interior volume; a substrate support to support a substrate within the interior volume; a plurality of cathodes coupled to the chamber body and having a corresponding plurality of targets to be sputtered onto the substrate; and a shield rotatably coupled to an upper portion of the chamber body and having at least one hole to expose at least one of the plurality of targets to be sputtered and at least one pocket disposed in a backside of the shield to accommodate and cover at least another one of the plurality of targets not to be sputtered, wherein the shield is configured to rotate about and linearly move along a central axis of the process chamber.

    Method for graded anti-reflective coatings by physical vapor deposition

    公开(公告)号:US10096725B2

    公开(公告)日:2018-10-09

    申请号:US14531549

    申请日:2014-11-03

    Abstract: A method for forming an anti-reflective coating (ARC) includes positioning a substrate below a target and flowing a first gas to deposit a first portion of the graded ARC onto the substrate. The method includes gradually flowing a second gas to deposit a second portion of the graded ARC, and gradually flowing a third gas while simultaneously gradually decreasing the flow of the second gas to deposit a third portion of the graded ARC. The method also includes flowing the third gas after stopping the flow of the second gas to form a fourth portion of the graded ARC. In another embodiment a film stack having a substrate having a graded ARC disposed thereon is provided. The graded ARC includes a first portion, a second portion disposed on the first portion, a third portion disposed on the second portion, and a fourth portion disposed on the third portion.

Patent Agency Ranking