Abstract:
A continuous process for the olefin polymerization in a fluidized bed reactor, said process comprising continuously passing a gaseous stream comprising one or more α-olefin monomers through the fluidized bed in the presence of a polymerization catalyst under reactive conditions, withdrawing polymeric product and unreacted fluids from the reactor, cooling part of said unreacted fluids below the dew point to form a two-phase mixture of gas and condensed liquid and reintroducing said two-phase mixture into the reactor, the process being characterized in that said twophase mixture is reintroduced under the distribution plate of the reactor so that a part of condensed liquid is separated from the gas and is successively fed above the fluidized bed through an external pipe connecting the bottom of the reactor to a point situated above the upper limit of the fluidized bed of polymer particles.
Abstract:
A process for the gas-phase polymerization of α-olefms carried out in two interconnected polymerization zones, wherein the growing polymer particles flow through the first of said polymerization zones (riser) under fast fluidization conditions, leave said riser and enter the second of said polymerization zones (downcomer) through which they flow downward in a densified form, the process being characterized in that: (a) the gas mixture present in the riser is totally or partially prevented from entering the downcomer by introducing into the upper part of said downcomer a liquid stream LB having a composition different from the gaseous mixture present in the riser; (b) the ratio R between the flow rate Fp of polymer circulated between said downcomer and said riser and the flow rate LB of said liquid being adjusted in a range from 10 to 50.
Abstract:
A process for the gas-phase polymerization of α-olefÊns CH2=CHR, where R is hydrogen or a hydrocarbon radical having 1-12 carbon atoms, carried out in a first and a second interconnected polymerization zones, wherein the growing polymer particles flow through the first of said polymerization zones (riser) under fast fluidization conditions, leave said riser and enter the second of said polymerization zones (downcomer) through which they flow downward in a densified form, leave said downcomer and are reintroduced into said riser, in which process: (a) the gas mixture present in the riser is totally or partially prevented from entering the downcomer, and (b) the gaseous composition inside a portion of the downcomer is maintained substantially similar to the gaseous composition reacting in the riser.
Abstract:
A method for controlling the flowability of polymer particles flowing downward in a densified form inside a polymerization reactor, in which one or more monomers are gasphase polymerized in the presence of a polymerization catalyst, the density of solid (Kg of polymer per m3 of reactor occupied by the polymer) being higher than 80% of the 'poured bulk density' of the polymer, the method being characterized in that a liquid stream is continuously fed into the polymerization reactor at a mass flow rate per unity of reactor surface higher than 30 Kg/h m2.
Abstract:
A propylene polymer composition having a melt flow rate (MFR) value from 3 to 30 g/10 min, comprising (percent by weight): A) 50-90% of one or more propylene copolymer(s) having a content of xylene-insoluble mojety at room temperature of not less than 85%, selected from the group consisting of propylene-ethylene random copolymers containing from 1 to 7%, of ethylene; propylene-C4-C8 α-olefin copolymers containing 2-10% of the C4-C8 alpha-olefins; and propylene-ethylene-C4-C8 a-olefin copolymers containing 0.5-5% of ethylene and 2-6% of C4-C8 α-olefins; and B) 10-50% of a copolymer of propylene containing from 8 to 40% of ethylene and optionally 1-10% of a C4-C8 alpha-olefin; the said MFR value (MFR (2)) being obtained by subjecting to degradation a precursor composition comprising the same components A) and B) in the above said proportions, but having the MFR value (MFR (1)) from 0.1 to 5 g/10 min with a ratio MFR (2) to MFR (1) of from 1.5 to 20.
Abstract:
A continuous process for the olefin polymerization in a fluidized bed reactor, said process comprising continuously passing a gaseous stream comprising one or more α-olefin monomers through the fluidized bed in the presence of a polymerization catalyst under reactive conditions, withdrawing polymeric product and unreacted fluids from the reactor, cooling part of said unreacted fluids below the dew point to form a two-phase mixture of gas and condensed liquid and reintroducing said two-phase mixture into the reactor, the process being characterized in that said twophase mixture is reintroduced under the distribution plate of the reactor so that a part of condensed liquid is separated from the gas and is successively fed above the fluidized bed through an external pipe connecting the bottom of the reactor to a point situated above the upper limit of the fluidized bed of polymer particles.