Abstract:
Embodiments herein describe a network device (e.g., an access point) that dynamically arranges multi-user (MU) multiple input multiple output (MIMO) compatible client devices into MU-MIMO groups. That is, the network device uses network metrics and historical data to change the assignment of client devices in the MU-MIMO groups which may improve MU-MIMO efficiency by reducing the amount of power that leaks between the clients devices in the group. In one embodiment, the AP identifies a MU-MIMO group based on a performance evaluation such as evaluating network metric or determining if the group is underutilized. The AP can replace the identified MU-MIMO group with a substitute MU-MIMO group where the substitute MU-MIMO group is selected based on historical data corresponding to the client devices assigned to the substitute MU-MIMO group.
Abstract:
A method is provided in which a first wireless access point selects two or more of a plurality of client devices based on similarity of receive signal strength and carrier frequency offset with respect to the first wireless access point, and sends a downlink multi-user multiple-input multiple-output (MIMO) transmission to the two or more client devices. The downlink multi-user MIMO transmission is configured to solicit acknowledgments from the two or more client devices. The acknowledgments are received at a plurality of antennas of the first wireless access point from the two or more client devices. Uplink multi-user MIMO processing of the acknowledgments is performed from the two or more of the plurality of client devices to recover the acknowledgments respectively from each of the two or more client devices.
Abstract:
A system and method are provided for performing stomp-and-restart techniques in distributed MU-MIMO system. A plurality of radio head devices are provided that are configured to be deployed separated from each other in a coverage region of interest of a wireless network. A central processor subsystem is provided that is in communication with the plurality of radio head devices. The central processor subsystem configured to perform several operations based on downconverted samples received from the plurality of radio head devices.
Abstract:
A plurality of time slots are allocated during which a location procedure is performed for one or more target wireless devices. Select ones of a plurality of wireless access points at different positions are assigned to each time slot such that multiple wireless access points assigned to a given time slot are sufficiently separated. In addition, wireless access points are assigned to a corresponding one of a plurality of groups for each time slot such that wireless access points assigned to a group tune to a channel used by a wireless access point in the group that transmits one or more frames that are intended to provoke one or more response frames from the one or more wireless devices.
Abstract:
Techniques are presented for detecting rogue wireless beacon devices. Wireless transmissions from beacon devices are received at a plurality of receiver devices. The wireless transmissions of the beacon devices comprise packets that carry information used for location-based services for mobile wireless devices. Content of one or more fields of the packets transmitted by the beacon devices and received by one or more of the receiver devices is obtained. The content of one or more fields of the packets is analyzed to detect an unauthorized beacon device. The analyzing operation may involve comparing the content of the one or more fields of the packets against a list that contains one or more identifiers for authorized beacon devices. In another form, analyzing may involve analyzing the content of the one or more fields of the packets with pattern information related to advertising content or advertising source.
Abstract:
Techniques are presented for distributed processing Distributed-Input Distributed-Output (DIDO) wireless communication. A plurality of base stations (e.g., APs) are provided, each configured to wirelessly serve one or more wireless devices (e.g., clients). At least first and second base stations are configured to transmit simultaneously at an agreed upon time. The first and second base stations are each configured to locally generate steering matrix information used to spatially precode their respective data transmissions in order to steer their respective data transmissions to their one or more wireless devices while nulling to the one or more client devices of the other base station. Moreover, the first and second base stations are each configured to locally generate a transmit waveform by applying the steering matrix information to their respective data transmissions.
Abstract:
Basic Service Set (BSS) resource reservation may be provided. BSS resource reservation may include determining a time window for a to accommodate a transmission of a target Station (STA) in a BSS, wherein the BSS further comprises one or more other STAs. An AP may then transmit a reservation scheduling frame, to claim access of a channel, inform the target STA of the time window, and reserve the channel for a duration defined by the time window.
Abstract:
Improving network throughput and, specifically, improving network throughput for networks comprising sub-7.25 GHz and millimeter wave links may be provided. Improving network throughput may include determining device information of a Station (STA). The STA may be enabled to communicate on a 60 (GHz) band in addition to sub 7.25 GHz bands based on the device information.
Abstract:
A device includes a memory and a hardware processor communicatively coupled to the memory. The hardware processor determines that a computing device communicatively coupled to an access point performed an action with respect to the access point and in response to determining that the action causes a deviation from a multi-user uplink policy of the access point, transmits a disciplinary message to the computing device.
Abstract:
Fine Time Measurement (FTM) Location Configuration Information (LCI) protection and, specifically, FTM LCI protection with authentication and selective client enablement may be provided. To perform FTM LCI protection, a controller may first obtain a key-pair including a public key and a private key from a Certificate Authority (CA). The controller my determine a venue location where an Access Point (AP) is located. The controller may send a Certificate Signing Request (CSR) with the venue location to the CA. In response to sending the CSR, the controller may receive a public key certificate from the CA, wherein the public key certificate includes the venue location. The AP may receive a request for Location Configuration Information (LCI) from a Station (STA), wherein the LCI includes an AP location. The AP creates a hash of LCI of the AP using the private key and sends the LCI and the hash to the STA.