Abstract:
A scroll wheel assembly for computer input device having a housing. The scroll wheel assembly includes a housing and an engagable scroll wheel. The scroll wheel is rotatable with a shaft to preferably cause vertical scrolling of an image on a display. The scroll wheel is laterally pivotable relative to the housing and the shaft. A ball joint is used to couple the scroll wheel to the shaft and permit this functional arrangement. A sensor is preferably positioned within the housing for sensing lateral movement of the rotatable member. In response to sensed lateral pivotable movement of the rotatable member, the image is horizontally scrolled, preferably in the direction of the lateral movement. The scrolling speed can be affected relative to the amount of displacement of the rotatable member and/or the amount of time that the rotatable member is displaced a predetermined amount. The computer input device having the rotatable member may take the form of a keyboard, a mouse, a trackball device, or another type of computer input device.
Abstract:
A computer input device includes a scrolling apparatus that includes a rotatable scroll wheel and a scroll wheel locking device. The scroll wheel locking device is activated when the document being scrolled reaches its end. When activated, the scroll wheel locking device prevents further rotation of the scroll wheel in the direction that would normally be past the end of the document, but permits rotation of the scroll wheel in the opposite direction towards the other end of the document. The scroll wheel locking device includes lockable wheel rotatable with and spaced from the scroll wheel. The lockable wheel includes angularly spaced pins. A tri-position lever includes locking elements engagable with the teeth to cause unidirectional locking.
Abstract:
A computer mouse has a plurality of motion sensors. The motion sensors generate data corresponding to their movement relative to a surface and transmit the data to a processor for analysis. The processor determines the rotational motion of the computer mouse and causes an image displayed on an associated video monitor to rotate proportionally to the relative movement of the computer mouse. The motion sensors may be two-dimensional photosensor arrays that generate image data of distinct features in the surface. As the computer mouse is moved relative to the surface, the locations of the distinct features move relative to the photosensor arrays. By analyzing this relative movement, the processor determines the rotational motion of the computer mouse.
Abstract:
The present invention provides an optics module for a scanning device such as a portable scanner. The optics module includes an illumination source and guide that transmits light through an optical window of the scanning device casing before reflecting off of the object to be scanned. The reflected light from the object travels back through the optical window and a lens before reaching a photosensor for evaluation by an associated microprocessor. The optical window of the scanning device provides a recessed portion in the scanning device casing. The recessed portion of the window is formed using the functional components of the optics module to eliminate a piece of glass typically used within the optical window that can be easily scratched or broken and provides a loss during the illumination process. By using the functional components of the optics module to form the recessed optical window, manufacturing costs to secure and replace a typical glass window contained therein can be eliminated, size of the optics module is reduced, and any contaminates that gather around the optics module can be easily removed by the user.
Abstract:
An optical imaging assembly comprises a mounting surface and at least one semiconductor die having a face and an edge portion. The edge portion of the at least one semiconductor die is mounted to the mounting surface. A light sensitive optical detector is located on the face of the at least one semiconductor die. An optical system is mounted to the mounting surface adjacent the at least one semiconductor die.
Abstract:
An imaging device is disclosed wherein light used to image an object (imaging light) and light used to determine the position of the imaging device relative to the object (positioning light) pass through the same optical device. Imaging light is directed from an imaging portion of the object to a linear photosensor array. Positioning light is directed from a positioning portion of the object to a two-dimensional photosensor array. In one embodiment of the imaging device, the imaging light and positioning light have different wavelengths and are directed to their respective locations by the use of a beam splitter. In another embodiment of the invention, the imaging light and positioning light are directed to their respective locations by diffracting the light with a lens.
Abstract:
An electronically controlled bicycle suspension apparatus includes a suspension system, a sensor such as a biaxial accelerometer, an electronics module, at least one actuator and at least one battery for powering the sensor, electronics module and actuator. The suspension system mounted to and between first and second parts of a bicycle movable relative to one another in response to a shock applied to the bicycle, includes a cylinder having telescoping members defining an interior cavity and respectively connected to the first and second relative movable bicycle parts and movable toward and away from one another between predetermined limits, an extendable and contractible spring disposed within the interior cavity being biased to force the telescoping members away from one another, a fluid contained in the interior cavity and a partition fixed across the interior cavity inside of a telescoping members to divide the interior cavity into separate chambers. The partition defines at least one orifice having a predetermined size for controlling a rate of flow of the fluid between the chambers so as to control contraction of the spring and thereby control movement of the telescoping members toward one another. The actuator is coupled to the cylinder and movable relative thereto to change the size of the orifice in the partition of the suspension system. The sensor is mounted to either one the first and second relative movable parts of the bicycle.
Abstract:
A beam splitter/path length compensator assembly for use in a color imaging assembly, comprising a beam splitter for splitting a polychromatic imaging light beam into a plurality of color component beams, and an integrally formed, transparent path length compensator device for differentially adjusting the focus distances of the color component beams. The beam splitter is encased within the path length compensator device. A color imaging assembly utilizing the beam splitter/path length compensator assembly for forming spatially separated, color component images of an object on a unitary image plane is also disclosed. A method for producing a beam splitter/path length compensator assembly is also disclosed. An optical assembly utilizing a beam combiner/path length compensator assembly for spatially and spectrally combining a plurality of color component optical beams into a combined optical beam having a unitary optical axis is also disclosed.
Abstract:
An optical system comprises a linear illumination source configured to emit light, a first scanning stage configured to receive the light and to scan the light, and a second scanning stage. The linear illumination source is configured to generate light forming a vertical field of view based on the one or more output signals received from a controller modulating the one or more output signals comprising image data defining content. The first scanning stage redirects portions of the light to generate an output defining a horizontal field of view based on the one or more output signals of the controller. The first scanning device combines the vertical field of view and the horizontal field of view in the output light to create a two-dimensional light image of the content. The second scanning stage receives and directs the output of the first scanning stage toward a projected exit pupil.
Abstract:
A parallel beam flexure mechanism (“PBFM”) for adjusting an interpupillary distance (“IPD”) of an optical device is disclosed. The PBFM includes a plurality of flexures, a mounting platen, an optical payload, and a horizontal translation mechanism. The mounting platen has a first end and a second end, where the mounting platen is attached to a first set of flexures that are in a parallel arrangement to a second set of flexures attached to a frame of an optical device, such as a head mounted display. The optical payload and horizontal translation mechanism are attached to the mounting platen, where the horizontal translation mechanism is configured to translate the mounting platen in a horizontal direction by bending the flexures, thereby adjusting the IPD of the optical device.