Abstract:
A planar substrate device (100) integrated with fin field effect transistors (FinFETs) and a method of manufâcture comprises a silicon-on-insulator (SOI) wafer (101) comprising a substrate (103); a buried insulator layer (105) over the substrate (103); and a semiconductor layer (115) over the buried insulator layer (105). The structure (100) further comprises a FinFET (130) over the buried insulator layer (105) and a field effect transistor (FET) (131) integrated in the substrate (103), wherein the FET (127) gate is planar to the FinFET gate (125). The structure (100) further comprises retrograde well regions (104, 106, 108, 110) configured in the substrate (103). In one embodiment, the structure (100) further comprises a shallow trench isolation region (111) configured in the substrate (103).
Abstract:
A method of providing a freestanding semiconductor layer (26) on a conventional SOI or bulk-substrate silicon device includes forming an amorphous or polycrystalline mandrel (22) on a monocrystalline base structure (20). A conformal polycrystalline semiconductor layer (24) is then formed on the mandrel (22) and on the base structure (20), wherein the polycrystalline layer (24) contacts the base structure (20). The polycrystalline semiconductor layer (24) is then recrystallized so that it has a crystallinity substantially similar to that of the base structure (20). Thus, a freestanding semiconductor layer (26) is formed with a high degree of control of the thickness and height thereof and maintaining a uniformity of thickness.
Abstract:
A multi-layered gate electrode stack structure of a field effect transistor device is formed on a silicon nano crystal seed layer (41) on the gate dielectric (43). The small grain size of the silicon nano crystal layer allows for deposition of a uniform and continuous layer of poly-SiGe (45) with a [Ge] of up to at least 70% using in situ rapid thermal chemical vapor deposition (RTCVD). An in-situ purge of the deposition chamber in a oxygen ambient at rapidly reduced temperatures results in a thin SiO2 or SixGeyOz interfacial layer (47), (3) to 4A thick. The thin SiO2 or SixGeyOZ interfacial layer is sufficiently thin and discontinuous to offer little resistance to gate current flow yet has sufficient [O] to effectively block upward Ge diffusion during heat treatment to thereby allow silicidation of a subsequently deposited layer of cobalt. This gate electrode stack structure is used for both nFETs.and pFETs.
Abstract:
Disclosed is a method and structure for a fin-type field effect transistor (FinFET) structure that has different thickness gate dielectrics (502, 504) covering the fins (112, 113, 114) extending from the substrate (110). These fins have a central channel region and source (60) and drain (62) regions on opposite sides of the channel region. The thicker gate dielectrics (504) can comprise multiple layers of dielectric (200, 500) and the thinner gate dielectrics (502) can comprise less layers of dielectric (200). A cap (116) comprising a different material than the gate dielectrics can be positioned over the fins.
Abstract:
Disclosed are embodiments of an asymmetric field effect transistor structure (200a-c) and a method of forming the structure in which both series resistance in the source region (204, 304) (Rs) and gate (210, 310) to drain ((205, 305) capacitance (Cgd) are reduced in order to provide optimal performance (i.e., to provide improved drive current with minimal circuit delay) Specifically, different heights (214, 215) of the source (204) and drain regions (205) and/or different distances (351, 352) between the source (304) and drain regions (305) and the gate (210, 310) are tailored to minimize series resistance in the source region (204, 305) (i.e., in order to ensure that series resistance is less than a predetermined resistance value) and in order to simultaneously to minimize gate (210, 310) to drain (205, 305) capacitance (i.e., in order to simultaneously ensure that gate ( 210, 310) to drain (205, 305) capacitance is less than a predetermined capacitance value).
Abstract:
Disclosed herein are embodiments of a multiple fin fin-type field effect transistor (350) (i.e., a multiple fin dual-gate or tri-gate field effect transistor) (300, 300a, 300b) in which the multiple fins arc partially or completely merged by a highly conductive material (360a, 360b) (e.g., a metal suicide). Merging the fins in this manner allow series resistance to be minimized with little, if any, increase in the parasitic capacitance between the gate and source/drain regions (375a-b). Merging the semiconductor fins (350) in this manner also allows each of the source/drain regions (375a-b) to be contacted by a single contact via as well as more flexible placement of that contact via.
Abstract:
A method, structure and alignment procedure, for forming a finFET. The method including, defining a first fin of the finFET with a first mask and defining a second fin of the finFET with a second mask. The structure including integral first and second fins of single-crystal semiconductor material and longitudinal axes of the first and second fins aligned in the same crystal direction but offset from each other. The alignment procedure including simultaneously aligning alignment marks on a gate mask to alignment targets formed separately by a first masked used to define the first fin and a second mask used to define the second fin.
Abstract:
Disclosed herein are improved fin-type field effect transistor (FinFET) structures (100) and the associated methods of manufacturing the structures. In one embodiment FinFET drive current is optimized by configuring the FinFET (100) asymmetrically to decrease fin resistance between the gate (120) and the source region (101 ) and to decrease capacitance between the gate (120) and the drain region (102). In another embodiment device destruction at high voltages is prevented by ballasting the FinFET (300). Specifically, resistance is optimized in the fin (350) between the gate (320) and both the source (301 ) and drain (302) regions (e.g., by increasing fin length (383), by blocking source/drain implant from the fin (350), and by blocking silicide formation on the top surface (395) of the fin) so that the FinFET (300) is operable at a predetermined maximum voltage.
Abstract:
A semiconductor device (80,85) including semiconductor material (35,40) having a bend and a trench feature formed at the bend, and a gate structure (45,50) at least partially disposed in the trench feature. A method of fabricating a semiconductor structure including forming a semiconductor material with a trench feature over a layer, forming a gate structure at least partially in the trench feature, and bending the semiconductor material such that stress is induced in the semiconductor material in an inversion channel region of the gate structure.
Abstract:
The present invention relates generally to semiconductor devices and, more specifically, to damascene gates (100; Fig 1C) having protected shorting regions (60) and related methods for their manufacture. A first aspect of the invention provides a method of forming a damascene gate (100) with protected shorting regions (60), the method comprising: forming a damascene gate having: a gate dielectric atop a substrate (12); a gate conductor (40) atop the gate dielectric; a conductive liner laterally adjacent the gate conductor (30); a spacer between the conductive liner and the substrate (20); and a first dielectric atop the gate conductor (60); removing a portion of the conductive liner (30); and depositing a second dielectric (60) atop a remaining portion of the conductive liner (30), such that the second dielectric is laterally adjacent both the first dielectric and the gate.