Abstract:
Methods and systems are described for individual and group paging of a wireless device via a wireless communications network. The method can include setting a paging cycle and a paging offset for the wireless device. A wireless device can be assigned to a device group using a device group identifier. The wireless device can wake up to check for paging events received via the wireless communication network during a portion of the paging cycle. A further operation can be receiving a group paging event for the device group at the wireless device during the portion of the paging cycle.
Abstract:
A delegate-based group channel access method is disclosed for machine-to-machine (M2M) communication. The delegate-based group channel access method groups M2M devices having common characteristics together, assigns a single delegate or multiple delegates from the group according to some criteria, and uses the assigned delegate to perform channel access. This method avoids unnecessary peer-to-peer communication between M2M devices, reduces the probability of collision on the channel during initial channel access, and reduces the control signaling overhead. The delegate-based group channel access method also coordinates the number of slots to backoff so that all M2M devices in the group keep pace with the delegate.
Abstract:
Systems and techniques for wireless device-to-device (D2D) communication are provided herein. A D2D group identifier may be included in wireless transmissions within D2D groups. D2D interference mitigation processes may be initiated when a D2D group identifier is detected by a wireless device outside the D2D group.
Abstract:
Embodiments of the present disclosure describe systems and methods for UE positioning in wireless networks. Various embodiments may include signaling of virtual identifiers associated with remote radio heads of a coordinated multipoint communication system and generating a positioning reference signal based on the virtual identifiers. Other embodiments may be described and/or claimed.
Abstract:
The apparatus (302) has a receiving circuit system (322) to receive data representative of radio link failure reports having information relating to disconnection of user equipment (314) of Evolved universal mobile telecommunication system (UMTS) Terrestrial Radio Access Network (E-UTRAN). Coverage analysis circuit system (324) identifies a hole in a network coverage area partially based on one of the reports. A corrective action circuit system (326) executes an automated action of coverage optimization and capacity to reconfigure resources of a network cell based on the hole. Independent claims are also included for the following: (1) a system for identifying a coverage hole (2) a method for adjusting coverage executable by a network management apparatus (3) an evolved node associated with E-UTRAN.
Abstract:
Technology for adjusting a receiver timing of a wireless device in a Coordinated Multipoint (CoMP) system is disclosed. One method can include the wireless device receiving a plurality of node specific reference signals (RSs) from a plurality of cooperating nodes in a coordination set of the CoMP system. The coordination set includes at least two cooperating nodes. The wireless device can estimate a composite received RS timing from a plurality of received RS timings generated from the plurality of node specific RSs. The received RS timings represent timings from the at least two cooperating nodes. The wireless device can adjust the receiver timing based on the composite received RS timing. A node specific RS can include a channel-state information reference signal (CSI-RS).
Abstract:
The method (600) involves receiving a configuration of discontinuous reception (610) that is levelled with a multi-radio wireless device e.g. cell phone, from an evolved node B. The wireless device is arranged with a set of radio operated transmitter-receivers. The configuration of discontinuous reception is applied (620) to one of the set of radio operated transmitter-receivers. A shift period is selected (630) among a cycle of 2 milliseconds (ms), 5ms, and 8ms for long discontinuous reception cycle. Independent claims are also included for the following: (1) a multi-radio wireless device (2) a computer readable medium comprising instructions for performing an interference reduction method.
Abstract:
Technology for adjusting a receiver timing of a wireless device in a Coordinated Multipoint (CoMP) system is disclosed. One method can include the wireless device receiving a plurality of node specific reference signals (RSs) from a plurality of cooperating nodes in a coordination set of the CoMP system. The coordination set includes at least two cooperating nodes. The wireless device can estimate a composite received RS timing from a plurality of received RS timings generated from the plurality of node specific RSs. The received RS timings represent timings from the at least two cooperating nodes. The wireless device can adjust the receiver timing based on the composite received RS timing. A node specific RS can include a channel-state information reference signal (CSI-RS).
Abstract:
Embodiments provide methods, systems, and apparatuses for multicast broadcast multimedia service (MBMS)-assisted content distribution in a wireless communication network. A proxy terminal may include an MBMS access client configured to receive and cache an MBMS transmission including media data and metadata. The proxy terminal may further include a hypertext transfer protocol (HTTP) server module configured to transmit at least a portion of the media data to a user equipment (UE) of the wireless communication network via an HTTP transmission. The media data and metadata may be in a dynamic adaptive streaming over HTTP (DASH) format. The proxy terminal may be included in an evolved Node B (eNB), the UE, or another UE of the wireless communication network.
Abstract:
An apparatus may include a processor circuit, a radio-frequency (RF) transceiver coupled to the processor circuit, the RF transceiver operable to transmit a wireless data message. The apparatus may also include a communication scheduling module operable on the processor circuit to monitor transmission of the wireless data message to a network, and to transmit to the network a deregistration request to release a connected state when transmission of the wireless data message is complete. Other embodiments are disclosed and claimed.