Abstract:
An apparatus includes a memory to store one or more identifiers for respective one or more home service providers, circuitry coupled to the memory, and a network access component for execution on the circuitry to automatically identify a set of access points that can provide wireless service to a device based upon the one or more identifiers, and select an access point from the identified set of access points to establish a wireless connection. Other embodiments are disclosed and claimed.
Abstract:
A device and method for forming a packet data network (PDN) connection at a dual access priority mode configured user equipment (UE) is disclosed. The method comprises sending, from the UE to a mobility management entity (MME), a PDN connectivity request message that includes a NAS signaling priority override indicator to indicate that the PDN connection has a different NAS signaling priority mode than an existing PDN connection. The existing PDN connection is operating in a first signaling priority mode. The existing PDN connection is deactivated at the UE. A new PDN connection, operating in a second NAS signaling priority mode, is established at the UE.
Abstract:
Examples are disclosed for roaming between heterogeneous wireless networks. In some examples, an authorization request for user equipment (UE) to access a visited wireless local area network (WLAN) may be received via a first protocol. The authorization request may be interworked by an authentication, authorization and accounting (AAA) interworking function (AIF) to enable the UE to be authenticated and authorized for access to the visited WLAN via information exchanged between a visited AAA server and a home AAA server. The visited home AAA server may be associated with different types of wireless networks to include wireless wide area networks (WWANs) or with a different WLAN. Interworking by the AIF may include translating the authentication request received via the first protocol to a second protocol to allow for the exchange of information between the visited AAA server and the home AAA server. Other examples are described and claimed.
Abstract:
An example of this invention provides low latency handovers between Mobile WiMAX and 2G/3G/LTE networks with only a single radio transmitting at any given point in time, by establishing L2 tunnel between 3GPP MME and WiMAX ASN for control plane signaling to perform pre-registration, pre-authentication and context transfer to the target network, while UE maintains its connection to the source network, and by setting up bearer path for packet forwarding between Servicing Gateway and WiMAX ASN. An example of this invention uses a virtual eNB to facilitate low latency L2 handoffs to legacy 2G/3G networks with minimum impact to SGSN and MME.
Abstract:
Embodiments describe methods, apparatuses and logic for a user equipment (UE) to connect to an access point (AP) in a wireless local area network (WLAN) based on credentials from a UE's home third generation partnership project (3GPP) network. In some embodiments, the UE may receive selection policy parameters from the WLAN including a network access identifier (NAI) realm. The UE may also receive selection policy parameters from the 3GPP network. The UE may compare the selection policy parameters of the WLAN with the selection policy parameters of the 3GPP network and discover roaming relationships between service providers and the relative priorities of different networks, and create a network list based on the comparison. The UE may then associate with an AP of the WLAN based on the prioritized network list.
Abstract:
Embodiments are directed to techniques to manage service requests in a wireless network. In one embodiment, an apparatus may comprise processing circuitry. The apparatus may further include computer-readable storage media having stored thereon instructions for execution by the processing circuitry. The instructions, when executed, may determine, at user equipment (UE) operating in an Evolved Packet System (EPS) mobility management (EMM)-IDLE mode and configured to use EPS services with control plane Cellular Internet of Things (CIoT) EPS optimization, to initiate a service request procedure to enable transfer of user data via a control plane, generate a service request message that contains a service type information element (IE) comprising a service type value set to indicate either a mobile originating request or a mobile terminating request, and send the service request message to a mobility management entity (MME) to initiate the service request procedure. Other embodiments are described and claimed.
Abstract:
Systems and methods provide solutions for reliable data transfer in a mobile communication network. A user equipment (UE) may indicate to the mobile communication network a capability of the UE to support a reliable data service protocol. The UE may process non-access stratum (NAS) messages, for both mobile originated (MO) data transfer and mobile terminated (MT) data transfer, using the reliable data service protocol to determine whether protocol data units (PDUs) of the NAS messages require no acknowledgement, require acknowledgment, or include an acknowledgement, and to detect and eliminate duplicate PDUs received at the UE in the NAS messages.
Abstract:
Embodiments are directed to techniques to manage service requests in a wireless network. In one embodiment, an apparatus may comprise processing circuitry. The apparatus may further include computer-readable storage media having stored thereon instructions for execution by the processing circuitry. The instructions, when executed, may determine, at user equipment (UE) operating in an Evolved Packet System (EPS) mobility management (EMM)-IDLE mode and configured to use EPS services with control plane Cellular Internet of Things (CIoT) EPS optimization, to initiate a service request procedure to enable transfer of user data via a control plane, generate a service request message that contains a service type information element (IE) comprising a service type value set to indicate either a mobile originating request or a mobile terminating request, and send the service request message to a mobility management entity (MME) to initiate the service request procedure. Other embodiments are described and claimed.
Abstract:
Systems and methods provide solutions for reliable data transfer in a mobile communication network. A user equipment (UE) may indicate to the mobile communication network a capability of the UE to support a reliable data service protocol. The UE may process non-access stratum (NAS) messages, for both mobile originated (MO) data transfer and mobile terminated (MT) data transfer, using the reliable data service protocol to determine whether protocol data units (PDUs) of the NAS messages require no acknowledgement, require acknowledgment, or include an acknowledgement, and to detect and eliminate duplicate PDUs received at the UE in the NAS messages.
Abstract:
Systems and methods provide solutions for reliable data transfer in a mobile communication network. A user equipment (UE) may indicate to the mobile communication network a capability of the UE to support a reliable data service protocol. The UE may process non-access stratum (NAS) messages, for both mobile originated (MO) data transfer and mobile terminated (MT) data transfer, using the reliable data service protocol to determine whether protocol data units (PDUs) of the NAS messages require no acknowledgement, require acknowledgment, or include an acknowledgement, and to detect and eliminate duplicate PDUs received at the UE in the NAS messages.