Abstract:
An embodiment includes a field effect transistor, comprising: a source region comprising a first III-V material doped to a first conductivity type; a drain region comprising a second III-V material doped to a second conductivity type that is opposite the first conductivity type; a gate electrode disposed over a channel region comprising a third III-V material; and a first spacer, between the channel and drain regions, comprising a fourth III-V material having a charge carrier-blocking band offset from the third III-V material. Other embodiments are described herein.
Abstract:
Deep gate-all-around semiconductor devices having germanium or group III-V active layers are described. For example, a non-planar semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a hetero-junction between an upper layer and a lower layer of differing composition. An active layer is disposed above the hetero-structure and has a composition different from the upper and lower layers of the hetero-structure. A gate electrode stack is disposed on and completely surrounds a channel region of the active layer, and is disposed in a trench in the upper layer and at least partially in the lower layer of the hetero-structure. Source and drain regions are disposed in the active layer and in the upper layer, but not in the lower layer, on either side of the gate electrode stack.
Abstract:
III-V compound semiconductor devices, such transistors, may be formed in active regions of a III-V semiconductor material disposed over a silicon substrate. A heterojunction between an active region of III-V semiconductor and the substrate provides a diffusion barrier retarding diffusion of silicon from the substrate into III-V semiconductor material where the silicon might otherwise behave as an electrically active amphoteric contaminate. In some embodiments, the heterojunction is provided within a base portion of a sub-fin disposed between the substrate and a fin containing a transistor channel region. The heterojunction positioned closer to the substrate than active fin region ensures thermal diffusion of silicon atoms is contained away from the active region of a III-V finFET.
Abstract:
Transistors for high voltage and high frequency operation. A non-planar, polar crystalline semiconductor body having a top surface disposed between first and second opposite sidewalls includes a channel region with a first crystalline semiconductor layer disposed over the first and second sidewalls. The first crystalline semiconductor layer is to provide a two dimensional electron gas (2DEG) within the channel region. A gate structure is disposed over the first crystalline semiconductor layer along at least the second sidewall to modulate the 2DEG. First and second sidewalls of the non-planar polar crystalline semiconductor body may have differing polarity, with the channel proximate to a first of the sidewalls. The gate structure may be along a second of the sidewalls to gate a back barrier. The polar crystalline semiconductor body may be a group III-nitride formed on a silicon substrate with the (1010) plane on a (110) plane of the silicon.
Abstract:
Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
Abstract:
Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
Abstract:
Non-planar semiconductor devices having group III-V material active regions with multi-dielectric gate stacks are described. For example, a semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a three-dimensional group III-V material body with a channel region. A source and drain material region is disposed above the three-dimensional group III-V material body. A trench is disposed in the source and drain material region separating a source region from a drain region, and exposing at least a portion of the channel region. A gate stack is disposed in the trench and on the exposed portion of the channel region. The gate stack includes first and second dielectric layers and a gate electrode.
Abstract:
Architectures and techniques for co-integration of heterogeneous materials, such as group III-V semiconductor materials and group IV semiconductors (e.g., Ge) on a same substrate (e.g. silicon). In embodiments, multi-layer heterogeneous semiconductor material stacks having alternating nanowire and sacrificial layers are employed to release nanowires and permit formation of a coaxial gate structure that completely surrounds a channel region of the nanowire transistor. In embodiments, individual PMOS and NMOS channel semiconductor materials are co-integrated with a starting substrate having a blanket layers of alternating Ge/III-V layers. In embodiments, vertical integration of a plurality of stacked nanowires within an individual PMOS and individual NMOS device enable significant drive current for a given layout area.
Abstract:
Ge and III-V channel semiconductor devices having maximized compliance and free surface relaxation and methods of fabricating such Ge and III-V channel semiconductor devices are described. For example, a semiconductor device includes a semiconductor fin disposed above a semiconductor substrate. The semiconductor fin has a central protruding or recessed segment spaced apart from a pair of protruding outer segments along a length of the semiconductor fin. A cladding layer region is disposed on the central protruding or recessed segment of the semiconductor fin. A gate stack is disposed on the cladding layer region. Source/drain regions are disposed in the pair of protruding outer segments of the semiconductor fin.
Abstract:
A quantum well transistor has a germanium quantum well channel region. A silicon-containing etch stop layer provides easy placement of a gate dielectric close to the channel. A group III-V barrier layer adds strain to the channel. Graded silicon germanium layers above and below the channel region improve performance. Multiple gate dielectric materials allow use of a high-k value gate dielectric.