Abstract:
A method for security authentication within a wireless network is disclosed. A method within an adhoc mesh network for two devices to quickly determine roles (i.e. which is the authenticator and which is the supplicant) while establishing a security association is provided for. The invention further provides for the inclusion of cached key information in the role negotiation process and the application of role negotiation to a shortened three-way handshake.
Abstract:
A method and system for secure processing of authentication key material in an ad hoc wireless network enables secure distribution of the authentication key material between a mesh authenticator (110) and a mesh key distributor (115), which may be separated by multiple wireless links. The method includes deriving a pairwise transient key for key distribution (PTK-KD) using a mesh key holder security information element (MKHSIE). A mesh authenticator pairwise master key (PMK-MA) is then requested using a first mesh encrypted key information element (MEKIE) that includes data origin information. Using the pairwise transient key for key distribution (PTK-KD), a second mesh encrypted key information element (MEKIE) is then decrypted to obtain the mesh authenticator pairwise master key (PMK-MA).
Abstract:
A method and apparatus for utilizing multiple group keys for secure communications among nodes is provided herein. During operation an access point will utilize a plurality of Medium Access Controller (MAC) Addresses, one for each service provided. Each MAC address has an associated lookup table containing encryption keys. From the perspective of nodes using a first service, group traffic sent using the MAC address for the second service is ignored, and no decryption attempt is made. Likewise, group traffic sent using the MAC address for the first service is ignored for group traffic using the second service.
Abstract:
The invention provides an enhanced passive scanning method for a wireless local area network, including the steps of transmitting at least one of a beacon signal or a gratuitous probe response in a WLAN channel by an access point. The gratuitous probe response is a supplemental beacon signal that is transmitted at intervals between the occurrence of regular beacon signals, but contains only essential information to allow mobile station manage roaming and timing.
Abstract:
A method of communicating within a mesh network comprises scheduling a mesh access reservation time period for transmission of one or more frames by the mesh device on a channel. During the scheduled mesh access reservation time period: contention for the channel is performed with one or more other mesh devices in the network; and at least one frame is transmitted when the mesh device wins the contention. After the scheduled mesh access reservation time period: when one or more frames scheduled for transmission during the scheduled mesh access reservation time period remain to be transmitted; contention for the channel continues; and the one or more frames are transmitted when the mesh device wins the contention for the channel and when another mesh device has not reserved the channel for the time period.
Abstract:
The disclosure relates to techniques and technologies for establishing a secure link between a mesh authenticator and a mesh key distributor for transporting security association messages. The secure link can allow the mesh key distributor to communicate results of an authentication process to the mesh authenticator.
Abstract:
A method (10 or 40) or system (200) of predictive sensing of periodic intermittent interference (PII) can include the measuring (12) of energy on a channel for an indication of PII, determining (14) if a channel is currently in a PII on-cycle, and adjusting (16) a clear channel assessment threshold to a new threshold for improved sensitivity of the PII on-cycle. If a current energy level on the channel is below the new threshold and if a previous on-energy characteristic suggests that the current energy level will remain below the new threshold for a predetermined minimum period of time, then a clear channel indication can be provided (20). A busy channel indication is provided (45) when either the current energy level is above the new threshold or the previous on-energy characteristic suggests the current energy level will not remain below the threshold for predetermined minimum period of time.
Abstract:
A method and apparatus for establishing security associations between nodes of an ad hoc wireless network includes two authentication steps: an initial first contact step (authentication, authorization, and accounting (AAA)-based authentication), and a "light-weight" step that reuses key material generated during first contact. A mesh authenticator within the network provides two roles. The first role is to implement an 802.1X port access entity (PAE), derive transient keys used for encryption with a supplicant mesh point via a four-way handshake and take care of back end communications with a key distributor. The second role is as a key distributor that implements a AAA-client and derives keys used to authenticate a mesh point during first contact or fast security association. The key distributor and the on-line authentication server can communicate to one another without these messages being transported over mesh links.
Abstract:
A mobile station (106) establishes a real time communication link via an access point (102) for carrying voice or other time-sensitive data. A WLAN subsystem (204) of the mobile station is normally kept in a low power state. Upon initiating a communication link the mobile station signals to the access point that uplink poll-based power save delivery mode will be used (614), and the access point reserves resources to assure the necessary quality of service. The mobile station initiates a frame transaction by first powering up the WLAN subsystem (712), acquiring the WLAN channel (407), and transmitting a polling frame. Upon successful receipt of the polling frame the access point prepares to reply with a response frame at an unspecified time within service window, during which time the mobile station maintains the WLAN subsystem power up and ready to receive the response frame. Upon successful receipt of the response frame, the mobile station places the WLAN subsystem back into a low power state.
Abstract:
A wireless local area network (WLAN) includes an access point (102) and a mobile station (106). The mobile station can operate in a low power mode by shutting down a WLAN subsystem (204) of the mobile station. While the mobile station is in a low power mode, the access point buffers data received at the access point destined for the mobile station (706). The mobile station wakes up to initiate a service period by transmitting a trigger frame to the access point, and identifies a traffic stream to be serviced in the presently initiated service period. The access point begins transmitting response frames to the mobile station, identifying the traffic stream requested by the mobile station, and in at least one response frame, the access point may indicate the buffer status of another traffic stream associated with the mobile station to allow the mobile station to make decisions regarding data retrieval and power save state.