Abstract:
A radio frequency identification tag (14) utilizes an antenna (22) formed in association with, and thus integral to, an article, package, package container, label and/or identification badge (10). In a preferred embodiment, a radio frequency identification tag circuit chip assembly (12) is secured to the article (10) and is electrically coupled to the antenna (22) formed on the article (10). Printing a conductive pattern on the article using conductive ink forms a preferred antenna.
Abstract:
An RF tagging system including an RF tag (10, 30) and an RF tag reader (80). The RF tag includes a plurality of RF resonant circuits. Each RF resonant circuit is resonant at a different specific frequency. Each plurality of RF resonant circuits divided into a group of decoder circuits (12, 32) and a group of data RF circuits (14, 34). The group of data RF circuits have resonant frequencies corresponding to a predetermined identification code when the resonant frequencies of the data RF circuits are decoded in accordance to the one decoding modality. The RF tag reader detects the resonant frequencies of the decoder RF circuits to determine the one decoding modality. The RF tag reader is operative in each of the predetermined decoding modality. The decoder RF resonant circuits may also indicate the number of data RF resonant circuits on the RF tag. The RF tag reader determines the number of RF circuits from the decoder RF resonant circuits to confirm the accurate detection of the data RF resonant circuits.
Abstract:
A blood pressure sensor (12) includes a source of photo-radiation, such as an array (30) of laser diodes (30A-I). The sensor also includes a two-dimensional, flexible reflective surface (14). The reflective surface is nominally positioned relative to the radiation source such that the radiation travels in a direction normal to the reflective surface. The reflective surface is placed adjacent to the location on the patient where the blood pressure data is to be acquired. Radiation from the source is reflected off of the reflective surface onto a two-dimensional array (17) of photo-detectors (18). Systolic and diastolic blood pressure fluctuations in the patient are translated into deflections of the patient's skin. These deflections cause corresponding deflections in the two dimensional reflective surface. The associated movement of said flexible reflective surface (14) due to blood pulsation causes scattering patterns from said reflective surface to be detected by the two dimensional array (17) of photo-detectors (18). The output from the array of photo-detectors is calibrated to blood pressure in mmHg during a calibration procedure to obtain a set of calibration relationships for one or more of the individual detectors. The calibration relationships are then used during acquisition of blood pressure data to arrive at blood pressure data.
Abstract:
A tagging system (20) compensates for both resonant frequency spatial dependent shifts and resonant frequency dependent shifts for detecting data resonant circuits (DC1-DC6) on an RF tag (10) which is carried by a tagged object (34). The system includes at least one transmitter (26) and at least one receiver (28) for determining the actual resonant frequencies of reference resonant circuits (SC1-SC5, FC1-FC4) on the tag (10). A microprocessor controller (22), in response to the frequency difference between the undisturbed resonant frequencies of the reference resonant circuits and the actual resonant frequencies of the reference resonant circuits, provides compensating factors to compensate for the spatial and frequency effects of the resonant frequencies of the resonant circuits on the tag (10). The transmitter and receiver determine the actual resonant frequency of each data resonant circuit (DC1-DC6) on the tag (10). The microprocessor controller (22) then determines the undisturbed resonant frequencies of the data resonant circuits on tag (10) from the actual resonant frequencies of the data resonant circuits and the compensation factors.
Abstract:
An integrated circuit module (501), with enclosed semiconductor devices (107, 115), includes a housing (101) with an electromagnetic wave reflective interior surface (103). A transmitter (105), mounted on a semiconductor device (107), transmits signals derived from a semiconductor device (107). An electromagnetic wave receiver (113), is positioned in the housing (101) such that it receives a transmitted wave via a reflective surface (103) along an electromagnetic wave path (117) from the transmitter (105).