Abstract:
A method and apparatus for determining the location of a communication unit in a CDMA system includes in a first embodiment, sending a location request via a spread spectrum signal to the subscriber (140), and receiving in return a subscriber signal including a response message showing a receive time of a particular symbol of the base's spreading sequence and a transmit time of a particular symbol of the subscriber's spreading sequence. The base (130), along with other receiving base(s) (140), also receives a predetermined symbol of the subscriber spreading sequence, and each determines a respective receive time of the predetermined symbol. The received information is then processed, along with known base location and delay information, to determine the subscriber location. If insufficient number of bases are capable of communicating with the subscriber, for example due to high loading/interference, auxiliairy bases (121) are also provided for receiving from or transmitting to the subscriber.
Abstract:
A method and apparatus for measuring a characteristic of a fading signal received using a two or more branch diversity receiver is presented. This fading characteristic is generally proportional to the speed of the user. In a first embodiment the number of times the antenna branches change in a selection diversity process is counted, and the result is scaled for imbalance between the branches. The output of a fading quality estimator, indicative of the fading and generally proportional to the speed, is thereby obtained.
Abstract:
A method and apparatus for determining the location of a communication unit in a CDMA system includes in a first embodiment, sending a location request via a spread spectrum signal to the subscriber (140), and receiving in return a subscriber signal including a response message showing a receive time of a particular symbol of the base's spreading sequence and a transmit time of a particular symbol of the subscriber's spreading sequence. The base (130), along with other receiving base(s) (140), also receives a predetermined symbol of the subscriber spreading sequence, and each determines a respective receive time of the predetermined symbol. The received information is then processed, along with known base location and delay information, to determine the subscriber location. If insufficient number of bases are capable of communicating with the subscriber, for example due to high loading/interference, auxiliary bases (121) are also provided for receiving from or transmitting to the subscriber.
Abstract:
A method and apparatus for determining the location of a communication unit in a CDMA system includes in a first embodiment, sending a location request via a spread spectrum signal to the subscriber (140), and receiving in return a subscriber signal including a response message showing a receive time of a particular symbol of the base's spreading sequence and a transmit time of a particular symbol of the subscriber's spreading sequence. The base (130), along with other receiving base(s) (140), also receives a predetermined symbol of the subscriber spreading sequence, and each determines a respective receive time of the predetermined symbol. The received information is then processed, along with known base location and delay information, to determine the subscriber location. If insufficient number of bases are capable of communicating with the subscriber, for example due to high loading/interference, auxiliary bases (121) are also provided for receiving from or transmitting to the subscriber.
Abstract:
A method and apparatus for determining the location of a communication unit in a CDMA system includes in a first embodiment, sending a location request via a spread spectrum signal to the subscriber (140), and receiving in return a subscriber signal including a response message showing a receive time of a particular symbol of the base's spreading sequence and a transmit time of a particular symbol of the subscriber's spreading sequence. The base (130), along with other receiving base(s) (140), also receives a predetermined symbol of the subscriber spreading sequence, and each determines a respective receive time of the predetermined symbol. The received information is then processed, along with known base location and delay information, to determine the subscriber location. If insufficient number of bases are capable of communicating with the subscriber, for example due to high loading/interference, auxiliary bases (121) are also provided for receiving from or transmitting to the subscriber.
Abstract:
A method for wireless communication system planning includes, in a first embodiment, determining an image tree (500), based on a transmitter location (401) and the reflective (415) and diffractive (425) surfaces within a coverage region, and limiting the image tree to exclude branching for higher order images requiring more than a predetermined number of reflections and/or diffractions, or potential child images corresponding to surfaces not within the scope of the parent image (530, 560). Based on the image tree and propagation path back-tracing (620) a received signal quality measure (e.g., power) is determined for each receive location. By comparing the different received signal powers an optimal receiver unit location is determined. Further, by building further image trees for further transmitter locations, an overall coverage quality can be determined for each transmitter and compared to yield an optimal transmitter location.
Abstract:
In a method for allocating a system resource (46) to subscribers of a wireless communication system a resource sensitivity indicator is determined for a system resource allocated by the wireless communication system for each of a first subscriber and a second subscriber (24, 26, 28). The system resource may include a level of service, a channel frequency, or a data rate. Next, an inefficient allocation of the system resource detected. One of the first and second subscribers having a lower resource sensitivity indicator is selected. Finally, an allocation of the system resource is changed for the selected subscriber unit to increase the efficiency of the allocation of the system resource.
Abstract:
A method for wireless communication system planning includes, in a first embodiment, determining an image tree (500), based on a transmitter location (401) and the reflective (415) and diffractive (425) surfaces within a coverage region, and limiting the image tree to exclude branching for higher order images requiring more than a predetermined number of reflections and/or diffractions, or potential child images corresponding to surfaces not within the scope of the parent image (530, 560). Based on the image tree and propagation path back-tracing (620), a received signal quality measure (e.g., power) is determined for each receive location. By comparing the different received signal powers, an optimal receiver unit location is determined. Further, by building further image trees for further transmitter locations, an overall coverage quality can be determined for each transmitter and compared to yield an optimal transmitter location.
Abstract:
A method for improved frequency assignment includes recording handoff statistics for subscriber units handing into and out of a base station (130). The handoff statistics include the IDs of the other base stations (240) involved in the handoff, along with the date and time of the handoff. The statistics of the handoff count are applied based on the number of occurrences within a time period (450), and are used to accept or reject the potential frequency assignments obtained from an assignment algorithm. In one embodiment of this algorithm, using a Q estimate, obtained from residual powers recorded on each frequency (435), a candidate frequency is chosen based on the lowest Q value. This candidate is tested against the handoff statistics, and if rejected, a frequency with the next lowest Q level is tested. This process is repeated until a frequency is assigned.