Abstract:
Embodiments of the present invention generally relate to the field of electronic communication, and more particularly, to techniques used to compensate for/reduce/or otherwise manipulate crosstalk in communication connectors, and apparatuses and methods which employ such techniques. In an embodiment, the present invention is a communication connector that includes a plurality of signal pairs including at least a first pair and a second pair, a first compensation stage between the first pair and the second pair, and an orthogonal compensation network between the first pair and the second pair. The orthogonal compensation network can be time delayed from the first compensation stage.
Abstract:
A system for managing and documenting a local area communications network is provided which deploys power sourcing equipment and powered devices by the use of active electronic modules, having an Ethernet controller and Power over Ethernet forwarding capabilities, as integral, managed components within the cable plant, to enhance management, documentation, security and emergency 911 aspects of the network as well as extending the physical reach of the network.
Abstract:
Cable foil tape having random or pseudo-random patterns or long pattern lengths of discontinuous metallic shapes and a method for manufacturing such patterned foil tape are provided. In some embodiments, a laser ablation system is used to selectively remove regions or paths in a metallic layer of a foil tape to produce random distributions of randomized shapes, or pseudo-random patterns or long pattern lengths of discontinuous shapes in the metal layer. In some embodiments, the foil tape is double-sided, having a metallic layer on each side of the foil tape, and the laser ablation system is capable of ablating nonconductive pathways into the metallic layer on both sides of the foil tape.
Abstract:
A communications cable is provided with a matrix tape that attenuates alien crosstalk when cables run near one another. The matrix tape is provided with conductive segments. The conductive segments are preferably provided on two layers of the matrix tape. In one embodiment, the conductive segments are attached to a film with an adhesive. A barrier tape is preferably provided between the cable core and the matrix tape.
Abstract:
The present invention relates to a barrier tape used as part of a communication cable to improve crosstalk attenuation. The barrier tape is provided with one or more barrier layers of discontinuous conductive segments. Conductive segments of one barrier layer are preferably sized and shaped to overlie gaps between conductive segments of another barrier layer.
Abstract:
A communication connector is described that includes a plug and a jack, into which the plug is inserted. The plug terminates a length of twisted pair cable. The jack includes a sled to support contacts for connecting to wires within the cable, a rigid circuit board that connects to the contacts, and a flex board that contacts the plug interface contacts. The jack also includes circuitry to compensate for crosstalk between wire pairs of the cable by adding capacitance values within the sled, rigid circuit board and/or flex board between traces carrying signals from the wire pairs so that crosstalk caused by the plug between wire pairs that have signals in phase cancels with crosstalk caused by the plug between signals out of phase, and so that the capacitance values added between each trace are about equal. The compensation is performed to reduce differential to common mode signal conversion.
Abstract:
Cable foil tape having random or pseudo-random patterns or long pattern lengths of discontinuous metallic shapes and a method for manufacturing such patterned foil tape are provided. In some embodiments, a laser ablation system is used to selectively remove regions or paths in a metallic layer of a foil tape to produce random distributions of randomized shapes, or pseudo-random patterns or long pattern lengths of discontinuous shapes in the metal layer. In some embodiments, the foil tape is double-sided, having a metallic layer on each side of the foil tape, and the laser ablation system is capable of ablating nonconductive pathways into the metallic layer on both sides of the foil tape.