Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may receive a downlink (DL) signal from a base station on one or more DL beam(s). The UE may identify of a nature of correspondence between one or more receive beams at the UE and one or more transmit beams at the UE. The UE may identify a selected DL beam of the one or more DL beam(s) for communications from the base station to the UE. The UE may transmit a random access channel (RACH) message to the base station using a resource and/or a RACH waveform selected based on the selected DL beam based at least in part on the selected DL beam and the nature of correspondence.
Abstract:
According to an aspect of the disclosure, a base station may convey the parameter information to the UE based on selection of particular resources to be used for transmission of synchronization signals, where the selected resources correspond to the particular parameter information. The UE may blindly detect the synchronization signals on various candidate resources and determine the parameter information based on the resources where the synchronization signals are detected. The apparatus may be a base station. In an aspect, the base station determines parameter information of one or more parameters. The base station selects, based on the parameter information, synchronization resources from a plurality of candidate resources for transmission of one or more synchronization signals, where the selected synchronization resources correspond to the parameter information. The base station transmits the one or more synchronization signals using the selected synchronization resources.
Abstract:
The apparatus may be a user equipment (UE). The apparatus receives a transmission of at least one of a plurality of first synchronization signals. The apparatus receives at least one repeat transmission of the at least one of the plurality of first synchronization signals. In an aspect, the transmission and the at least one repeat transmission are received in a same synchronization signal block.
Abstract:
In one aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided to reduce overhead at the expense of increasing latency for UEs with weak link gain, while latency for most UEs may remain the same. The apparatus may be a UE. The apparatus may transmit a RACH preamble to a base station in one or more attempts. The apparatus may receive, through a random access response message from the base station, information including the number of attempts the base station uses to decode the RACH preamble. The apparatus may adjust the transmission power for the connection request message according to the number of attempts the base station uses to decode the RACH preamble. The apparatus may transmit the connection request message using the adjusted transmission power.
Abstract:
A UE may select a first beam for communication with a base station. The UE may attempt, through the selected first beam, at least one RACH procedure with the base station. The UE may determine that the at least one RACH procedure failed with the base station. The UE may send, after a successful RACH procedure with the base station, information indicating that the at least one RACH procedure failed. In an aspect, the UE may select a new beam for communication with the base station after the determination that the at least one RACH procedure failed, and at least a portion of the successful RACH procedure may be performed through the selected new beam.
Abstract:
A user equipment (UE) may be configured to perform a random access channel (RACH) procedure with a base station. As part of the RACH procedure, the base station may transmit a contention resolution message to the UE. The UE may receive, from the base station, the contention resolution message. The contention resolution message may indicate at least a beam index corresponding to a beam, such as a transmit beam of the base station. The UE may determine whether the beam index is applicable to the UE. The UE may communicate with the base station through the beam corresponding to the beam index when the beam index is applicable to the UE. For example, the UE may send an acknowledgement message to the base station, and the base station and UE may switch to a beam corresponding to the beam index after communication of the acknowledgement message.
Abstract:
When beamforming (e.g., via a millimeter wave system (mmW)) is used for wireless communication, a base station may transmit beams that are directed to certain directions. Due to the directional nature of the beams in the mmW system, an approach to determine a beam that provides a desirable gain is studied. The apparatus may be a user equipment (UE). The apparatus receives, from a base station, a plurality of signals through a plurality of beams of the base station, each of the plurality of beams corresponding to a respective antenna port of a plurality of antenna ports of the base station. The apparatus performs channel estimation for each beam of the plurality of beams from the plurality of antenna ports based on the plurality of signals. The apparatus transmits, to the base station, a feedback signal including information about one or more beams selected from the plurality of beams, the feedback signal further including one or more candidate uplink precoders.
Abstract:
A first apparatus may transmit, to a user equipment (UE), on a control channel, one or more indications of one or more beam indexes corresponding to one or more beams. The first apparatus may transmit, to the UE, one or more reference signals through the one or more beams corresponding to the one or more beam indexes. The reference signals may be used by the UE to select a best subarray and/or receive combiner for communication with the first apparatus.
Abstract:
A UE may receive a directional synchronization subframe from a base station and transmit a scheduling request to the base station during a time period based on the directional synchronization subframe. The scheduling request may enable a base station to grant the UE resources to send a buffer status report (BSR). The time period may be associated with a random access channel (RACH) time period. The UE may also transmit a scheduling request within a frequency region of the RACH time period. The scheduling request may be transmitted based on a received indication of a set of subcarrier, a cyclic shift, or a sequence index. In some examples, the resources used by the UE to send the BSR may include physical uplink shared channel (PUSCH) or physical uplink control channel (PUCCH) resources.
Abstract:
Methods, systems, and devices for wireless communication are described. Some examples provide for identifying a primary synchronization signal (PSS) sequence of a synchronization subframe, determining, for the synchronization subframe, an extended synchronization signal (ESS) sequence based at least in part on the PSS sequence and transmitting the synchronization subframe. Other examples provide for generating an ESS sequence for a synchronization subframe to be communicated to a UE, scrambling the ESS sequence based at least in part on cell-specific information associated with the base station and transmitting, to the UE, the scrambled ESS sequence in the synchronization subframe.