Abstract:
A method for memory utilization by an electronic device is described. The method includes transferring a first portion of a first decision tree and a second portion of a second decision tree from a first memory to a cache memory. The first portion and second portion of each decision tree are stored contiguously in the first memory. The first decision tree and second decision tree are each associated with a different feature of an object detection algorithm. The method also includes reducing cache misses by traversing the first portion of the first decision tree and the second portion of the second decision tree in the cache memory based on an order of execution of the object detection algorithm.
Abstract:
A method for three-dimensional face generation is described. An inverse depth map is calculated based on a depth map and an inverted first matrix. The inverted first matrix is generated from two images in which pixels are aligned vertically and differ horizontally. The inverse depth map is normalized to correct for distortions in the depth map caused by image rectification. A three-dimensional face model is generated based on the inverse depth map and one of the two images.
Abstract:
A method includes capturing an image of a scene that includes a diagram. The method further includes applying functional block recognition rules to image data of the image to recognize functional blocks of the diagram. The functional blocks include at least a first functional block associated with a first computer operation. The method further includes determining whether the functional blocks comply with functional block syntax rules. A functional graph is computer-generated based on the functional blocks complying with the functional block syntax rules. The functional graph corresponds to the diagram, and the functional graph includes the functional blocks.
Abstract:
A method for detecting and tracking a target object is described. The method includes performing motion-based tracking for a current video frame by comparing a previous video frame and the current video frame. The method also includes selectively performing object detection in the current video frame based on a tracked parameter.
Abstract:
Present embodiments contemplate systems, apparatus, and methods to improve feature generation for object recognition. Particularly, present embodiments contemplate excluding and/or modifying portions of images corresponding to dispersed pixel distributions. By excluding and/or modifying these regions within the feature generation process, fewer unfavorable features are generated and computation resources may be more efficiently employed.
Abstract:
The rendering of 3D video images on a stereo-enabled display (e.g., stereoscopic or autostereoscopic display) is described. The process includes culling facets facing away from a viewer, defining foreground facets for Left and Right Views and common background facets, determining lighting for these facets, and performing screen mapping and scene rendering for one view (e.g., Right View) using computational results for facets of the other view (i.e., Left View). In one embodiment, visualization of images is provided on the stereo-enabled display of a low-power device, such as mobile phone, a computer, a video game platform, or a Personal Digital Assistant (PDA) device.
Abstract:
Techniques for performing mesh-based video compression/decompression with domain transformation are described. A video encoder partitions an image into meshes of pixels, processes the meshes of pixels to obtain blocks of prediction errors, and codes the blocks of prediction errors to generate coded data for the image. The meshes may have arbitrary polygonal shapes and the blocks may have a predetermined shape, e.g., square. The video encoder may process the meshes of pixels to obtain meshes of prediction errors and may then transform the meshes of prediction errors to the blocks of prediction errors. Alternatively, the video encoder may transform the meshes of pixels to blocks of pixels and may then process the blocks of pixels to obtain the blocks of prediction errors. The video encoder may also perform mesh-based motion estimation to determine reference meshes used to generate the prediction errors.
Abstract:
In a video system a method and/or apparatus to process video blocks comprising: the generation of at least one set of projections for a video block in a first frame, and the generation of at least one set of projections for a video block in a second frame, The at least one set of projections from the first frame are compared to the at least one set of projections from the second frame. The result of the comparison produces at least one projection correlation error (PCE) value.
Abstract:
The registration of images comprising generating a plurality of projections from a base frame and generating a plurality of projections from a movement frame. Comparing a set of projections from the base frame, with a second set of projections from the movement frame, and generating a global motion vector estimate to add to the base frame.
Abstract:
This disclosure describes an apparatus, such as a wireless communication device, that applies a direct evaluation technique to render triangles for the 3D graphical environment. The apparatus includes a rendering engine that defines a rectangular area of pixels, referred to as a bounding box, that bounds the area to be rendered. The rendering engine evaluates coordinates associated with the pixels of the rectangular area to selectively render those pixels that fall within the triangular area. The direct evaluation triangle rendering algorithm may require fewer complex operations than the more computationally intensive interpolation process employed by other systems. As a result, the apparatus may present a 3D graphical environment while preserving as much as possible the available power.