Abstract:
Techniques are described for wireless communication. A first method includes winning a contention for access to an unlicensed radio frequency spectrum band, and transmitting at least a portion of a channel usage beacon signal (CUBS) over the unlicensed radio frequency spectrum band. The at least portion of the CUBS is transmitted in a number of frequency interlaces of the unlicensed radio frequency spectrum band. A second method includes winning a contention for access to an unlicensed radio frequency spectrum band; determining whether the contention is won within a threshold time before a next symbol period boundary; and transmitting at least a portion of a CUBS over the unlicensed radio frequency spectrum band. The at least portion of the CUBS is transmitted during a preamble including a fractional period of a first symbol period. The at least portion of the CUBS may be based at least in part on the determining.
Abstract:
Methods, systems, and devices are described for wireless communication. One method may include receiving, at a first base station, at least one clear channel assessment (CCA)-exempt transmission (CET) indicating timing information of at least a second base station over a shared spectrum. A timing of the first base station may be adjusted based on the received timing information of the second base station. Another method of wireless communication may include identifying a CCA slot assigned to a first base station for a frame, which may be associated with time synchronization, of a shared spectrum. A CCA may be performed at the identified CCA slot for the frame. When the CCA is successful, a first timing information of the first base station may be selectively transmitted during the frame. When the CCA is unsuccessful, a second timing information of a second base station may be listened for during the frame.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive downlink control information (DCI) that schedules an uplink communication in an uplink frequency band. The UE may transmit, at an uplink frequency within the uplink frequency band, the uplink communication with a power that varies over the uplink frequency band based at least in part on a location of the uplink frequency relative to a downlink frequency band associated with the UE. Numerous other aspects are provided.
Abstract:
Control information may be transmitted for different TTI lengths. Different control information for the different TTIs may be transmitted using control channel resources that are established for communication of control information, such as a physical downlink control channel (PDCCH), for example. Control information for a first TTI may be located in a first set of resources, and control information for a second TTI may be located in a second set of resources. The first set of resources may be located within a first search space that may be searched by a user equipment (UE) to identify the first control information. The second set of resources may be located within a second search space that may be searched by the UE to identify the second control information.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may receive a resource allocation indicating a plurality of transmission tones comprising a subset of data tones of a plurality of data tones and a subset of peak reduction tones (PRTs) of a plurality of PRTs, wherein the resource allocation indicates a plurality of data tone locations and a plurality of PRT locations within a particular bandwidth, wherein a subset of PRT locations of the plurality of PRT locations are arranged relative to a subset of data tone locations of the plurality of data tone locations according to a PRT sequence corresponding to a set of allocated frequency resources; and transmit a data transmission using a waveform based at least in part on the resource allocation. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. A frequency band configuration for a full-duplex slot may be indicated, where a frequency band configuration may include one or more downlink frequency bands and one or more uplink frequency bands. In some cases, a frequency band configuration may also include one or more guard bands. A user equipment (UE) may determine the frequency band configuration for a full-duplex slot based on a frequency configuration indication, which may include an index for a table of frequency band configurations, one or more bitmaps, or respective start and length indications for each frequency band. A frequency band configuration may apply to one slot or to multiple slots.
Abstract:
A base station is disclosed that includes two separated antenna arrays. In a TDD mode of operation, both arrays are used for either transmit or receive. In a sub-band full-duplex mode of operation, one array is used to transmit downlink symbols while the remaining array is used to receive uplink symbols.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may transmit an indication of first and second configurations for sounding reference signal (SRS) transmissions during first and second transmission time intervals (TTIs) having different durations. A user equipment (UE) may identify an SRS to be transmitted and determine a configuration for the SRS transmission based on the TTI duration and the received indication of the first and second configurations. The UE may then transmit the SRS based on the configuration. A base station may receive an SRS during a TTI and may determine a channel quality based at least in part on the SRS. Additionally, a device may identify data to transmit during a TTI, determine a number of resource elements available for transmission of the data during a TTI, and determine a transport block size (TBS) for the data transmission based on the available resource elements.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may receive a resource allocation indicating a plurality of transmission tones comprising a subset of data tones of a plurality of data tones and a subset of peak reduction tones (PRTs) of a plurality of PRTs, wherein the resource allocation indicates locations for the plurality of data tones and locations for the plurality of PRTs within a particular bandwidth, wherein the locations for the plurality of PRTs are arranged relative to the locations for the plurality of data tones according to a PRT subsequence of a universal PRT sequence, and wherein the PRT subsequence corresponds to a sub-band of the particular bandwidth; and transmit a data transmission using a waveform based at least in part on the resource allocation. Numerous other aspects are provided.
Abstract:
Wireless communications systems may configure a subset of allocated resources (e.g., one or more resource elements (REs) of one or more allocated resource blocks (RBs)) as peak reduction tones (PRTs) for a peak-cancelation signal. For instance, wireless communications systems may configure a fixed PRT allocation based on a Costas array. In some examples, each column of a Costas array may correspond to a RB of a set of allocated resources. A transmitting device may thus identify one or more PRT REs based on the Costas array and a mapping of allocated RBs to the columns of the Costas array. For instance, a transmitting device may identify a pattern of PRT REs to use for a peak-cancellation signal based at least in part on a configured Costas array (e.g., where the peak-cancellation signal may reduce peaks of a corresponding data signal to ultimately reduce peak-to-average power ratio (PAPR) of a transmission).