Abstract:
A distributed control system has a plurality of distributed field devices, each of which contains a transducer and a wireless transceiver. The distributed control system includes a base station transceiver, a database and a virtual transmitter application in communication with the database. Each field device transmits and receives data via wireless signals between the communications boards and the base station. The data is stored in the database for later retrieval and evaluation by the virtual transmitter application. The deployed field device senses information and transmits the sensed information wirelessly to a base station. The sensed information is stored in memory on a computer system, and programmatically groomed to provide a measurement value, upon request by a user.
Abstract:
A process control system utilizes wireless transceivers to divorce the field devices from traditional wired network topologies. By providing field devices with wireless transceivers and shared wireless transceivers for adapting wired field devices, the field device network may be adapted to any number of network topologies without concern for additional wiring costs. Specifically, a power supply can be provided for each field device or for groups of field devices, as needed. Thus, the entire network can receive power from a single power bus, without expensive power filtering. In addition, the network can be a hybrid in which part of the information is transmitted and received over wired lines and part is transmitted and received over wireless communications.
Abstract:
A wireless mesh network uses communication frames that can include timeslots of different sizes depending on communication speed capabilities of the devices assigned to the timeslots. The communication frame is divided into timeslot increments of equal length. The timeslots are made up of one or more timeslot increments.
Abstract:
A wireless mesh network provides secure communication by encrypting data using one or more encryption keys. A configuration device in communication with a security manager of the network provides a temporary secure communication path between the security manager and a new field device to be added to the mesh network. Cryptographic material and other configuration data can then be transferred between the security manager of the network and the new field device securely via the configuration device.
Abstract:
A network includes a plurality of wirelessly interconnected self-organizing network (SON) devices for relaying signals in a self-organizing network and a field device for originating output signals. The sensor is configured to transmit the output signals to at least one of the SON devices, and the SON devices do not originate signals but only relay signals originated externally. At least one of the SON devices is self-powered by harvesting energy from an adjacent energy source.
Abstract:
A distributed control system (32) has a plurality of distributed field devices (34), each of which contains a transducer (36) and a wireless transceiver (38). The distributed control system (32) includes a base station transceiver (40), a database (42) and a virtual transmitter application (44) in communication with the database. Each field device (34) transmits and receives data via wireless signals between the communications board (38) and the base station. The data is stored in the database (42) for later retrieval and evaluation by the virtual transmitter application (44). The deployed field device (34) senses information and transmits the sensed information wirelessly to a base station. The sensed information is stored in memory on a computer system,and programmatically groomed to provide a measurement value, upon request by a user.