-
公开(公告)号:US10672081B1
公开(公告)日:2020-06-02
申请号:US15398422
申请日:2017-01-04
Inventor: Roxane Lyons , John H. Jenkins , Brian N. Harvey , Amber L. Wyatt
Abstract: A computer-implemented method for providing data associated with insured losses is presented. Data regarding an event that is a cause of the insured losses may be received. Respective indications of locations of properties insured by an insurance provider and sustaining the insured losses may be received. Image data from at least one image capturing device, where the image data is obtained from an aerial view of the properties and indicative of respective conditions of the properties, may be received. The image data may be processed to determine, for each property, an indication of the respective condition. The data associated with the insured losses may be provided via a user interface. The data associated with the insured losses may include (i) the respective indications of the locations of the properties, and (ii) the indications of the respective conditions of the properties.
-
公开(公告)号:US10584518B1
公开(公告)日:2020-03-10
申请号:US16288602
申请日:2019-02-28
Inventor: Leo Chan , Kristopher Keith Gaudin , Roxane Lyons , William J. Leise , John A. Nepomuceno , Rajiv C. Shah , Edward P. Matesevac, III , Jennifer Criswell Kellett , Steven C. Cielocha , Jeremy Myers , Matthew S. Megyese , Jennifer L. Crawford
Abstract: An automatic alarm system for a vehicle includes a sensor adapted to detect electromagnetic data, a computer system, and an automatic alarm mechanism. The computer system receives data from the sensor. A computer process analyzes the data from the sensor to determine whether a pattern from the electromagnetic data has been detected, accesses a library of known patterns of electromagnetic data emitted by emergency vehicles, and compares the pattern of electromagnetic data detected by the sensor with the known patterns of electromagnetic data emitted by emergency vehicles that are stored in the library. The automatic alarm mechanism activates in response to the processor determining that the comparison matches a known pattern of electromagnetic data for an emergency vehicle resulting in the computer processor sending a first signal to activate an alarm.
-
公开(公告)号:US10403150B1
公开(公告)日:2019-09-03
申请号:US16223578
申请日:2018-12-18
Inventor: John A. Nepomuceno , Leo Chan , Steven C. Cielocha , Roxane Lyons , Matthew S. Megyese , William J. Leise , Jennifer Criswell Kellett , Kristopher Keith Gaudin , Jennifer L. Crawford , Jeremy Myers , Edward P. Matesevac, III , Rajiv C. Shah
Abstract: Systems and methods are disclosed for identifying high risk parking lots. High risk parking lots may be, for example, parking lots that pose a higher than average risk of collisions and/or theft. Auto insurance claim data may be analyzed to identify hazardous areas. A virtual navigation of roads within the hazardous area may be identified. Public parking lots within the virtual navigation map may be defined, with each public parking lot determined as either in a hazardous area or not. A vehicle may be determined to be approaching or parking in a parking lot in a hazardous area, and a nearby public parking lot not associated with the hazardous area may be selected instead. A route from a current position to the nearby public parking lot may be generated, and the vehicle may be routed to the nearby public parking lot. As a result, collisions and thefts may be reduced.
-
公开(公告)号:US10275834B1
公开(公告)日:2019-04-30
申请号:US16045851
申请日:2018-07-26
Inventor: Nathan L Tofte , Timothy W Ryan , Nathan W Baumann , Michael Shawn Jacob , Joshua David Lillie , Brian N Harvey , Roxane Lyons , Rosemarie Geier Grant
IPC: G06Q40/08
Abstract: Unmanned aerial vehicles (UAVs) may facilitate insurance-related tasks. UAVs may actively be dispatched to an insured asset and the area surrounding an insured asset, such as with the policyholder or insured's permission and collect data related to the insured asset, such as images, video, audio, weather conditions, thermal signatures, wood and soil samples, etc., and transmit this data to a computing device. The computing device may be associated with and/or utilized by an insurance provider to perform insurance-related tasks, such as processing the data to determine an amount of risk associated with the insured asset. If the amount of risk has increased, the computing device may provide a recommendation to a mobile device of the policyholder on how to reduce the risk such that corrective action may be taken. Insurance discounts may be provided based upon following recommendations that mitigate risk.
-
公开(公告)号:US10222228B1
公开(公告)日:2019-03-05
申请号:US15482512
申请日:2017-04-07
Inventor: Leo Nelson Chan , Kristopher Keith Gaudin , Roxane Lyons , William J. Leise , John A. Nepomuceno , Rajiv C. Shah , Edward P. Matesevac, III , Jennifer Criswell Kellett , Steven C. Cielocha , Jeremy Myers , Matthew S. Megyese , Jennifer L. Crawford
Abstract: Systems and methods are disclosed for educating vehicle drivers. Auto insurance claim data may be analyzed to identify hazardous areas associated with an abnormally high amount or severity of vehicle collisions. A virtual navigation map of roads within the hazardous areas may be built or generated. A common cause of several vehicle collisions at a hazardous area may be identified, and a virtual reconstruction of a scenario involving the common cause and/or a road map of collisions locations of may be created. The virtual reconstruction of the scenario may be displayed on a driver education virtual simulator to enhance driver education and reduce the likelihood of vehicle collisions.
-
56.
公开(公告)号:US10163164B1
公开(公告)日:2018-12-25
申请号:US14858073
申请日:2015-09-18
Inventor: Nathan L. Tofte , Timothy W. Ryan , Nathan W. Baumann , Michael Shawn Jacob , Joshua David Lillie , Brian N. Harvey , Roxane Lyons , Rosemarie Geier Grant
Abstract: Systems and methods are described for using data collected by unmanned aerial vehicles (UAVs) to generate insurance claim estimates that an insured individual may quickly review, approve, or modify. When an insurance-related event occurs, such as a vehicle collision, crash, or disaster, one or more UAVs are dispatched to the scene of the event to collect various data, including data related to vehicle or real property (insured asset) damage. With the insured's permission or consent, the data collected by the UAVs may then be analyzed to generate an estimated insurance claim for the insured. The estimated insurance claim may be sent to the insured individual, such as to their mobile device via wireless communication or data transmission, for subsequent review and approval. As a result, insurance claim handling and/or the online customer experience may be enhanced.
-
公开(公告)号:US20240296503A1
公开(公告)日:2024-09-05
申请号:US18663871
申请日:2024-05-14
Inventor: Nathan L. Tofte , Timothy W. Ryan , Nathan W. Baumann , Michael Shawn Jacob , Joshua David Lillie , Brian N. Harvey , Roxane Lyons , Rosemarie Geier Grant
IPC: G06Q40/08 , B64C39/02 , B64D47/08 , B64U10/00 , B64U101/00 , B64U101/30 , G01C11/02 , G06F18/22 , G06Q40/00 , G06T7/00 , G06T7/20 , G06T7/246 , G06T7/73 , G06T11/60 , G06T17/05 , G06V10/42 , G06V20/10 , G06V20/40 , H04N5/44 , H04N7/18
CPC classification number: G06Q40/08 , B64C39/024 , B64D47/08 , G01C11/02 , G06F18/22 , G06Q40/00 , G06T7/00 , G06T7/20 , G06T7/246 , G06T7/75 , G06T11/60 , G06T17/05 , G06V10/42 , G06V20/10 , G06V20/41 , H04N5/44 , H04N7/185 , B64U10/00 , B64U2101/00 , B64U2101/30 , G06T2207/10032 , G06T2207/30232 , G06T2207/30236 , G06T2207/30252 , G06T2215/16 , G06V20/44
Abstract: Unmanned aerial vehicles (UAVs) may facilitate the generation of a virtual reconstruction model of a vehicle collision. UAVs may collect data (including images) related to the vehicle collision, such as with the insured's permission, which may be received by an external computing device associated with the insurer and utilized to perform a photogrammetric analysis of the images to determine vehicle impact points, the road layout at the scene of the collision, the state of the traffic light at the scene of the collision, the speeds and directions of vehicles, etc. This data may be used to generate a virtual reconstruction model of the vehicle collision. An insurer may use the virtual reconstruction model to perform various insurance-related tasks, such as allocating fault to drivers or autonomous vehicles involved in the vehicle collision, and adjustment of insurance pricing based upon the fault allocation.
-
公开(公告)号:US12033221B2
公开(公告)日:2024-07-09
申请号:US18206889
申请日:2023-06-07
Inventor: Nathan L. Tofte , Timothy W. Ryan , Nathan W. Baumann , Joshua David Lillie , Brian N. Harvey , Roxane Lyons , Rosemarie Geier Grant , Michael Shawn Jacob
IPC: G06Q40/00 , B64C39/02 , B64D47/08 , G01C11/02 , G06F18/22 , G06Q40/08 , G06T7/00 , G06T7/20 , G06T7/246 , G06T7/73 , G06T11/60 , G06T17/05 , G06V10/42 , G06V20/10 , G06V20/40 , H04N5/44 , H04N7/18 , B64U10/00 , B64U101/00 , B64U101/30
CPC classification number: G06Q40/08 , B64C39/024 , B64D47/08 , G01C11/02 , G06F18/22 , G06Q40/00 , G06T7/00 , G06T7/20 , G06T7/246 , G06T7/75 , G06T11/60 , G06T17/05 , G06V10/42 , G06V20/10 , G06V20/41 , H04N5/44 , H04N7/185 , B64U10/00 , B64U2101/00 , B64U2101/30 , G06T2207/10032 , G06T2207/30232 , G06T2207/30236 , G06T2207/30252 , G06T2215/16 , G06V20/44
Abstract: Unmanned aerial vehicles (UAVs) may facilitate insurance-related tasks. UAVs may actively be dispatched to an area surrounding a property, and collect data related to property. A location for an inspection of a property to be conducted by a UAV may be received, and one or more images depicting a view of the location may be displayed via a user interface. Additionally, a geofence boundary may be determined based on an area corresponding to a property boundary, where the geofence boundary represents a geospatial boundary in which to limit flight of the UAV. Furthermore, a navigation route may be determined which corresponds to the geofence boundary for inspection of the property by the UAV, the navigation route having waypoints, each waypoint indicating a location for the UAV to obtain drone data. The UAV may be directed around the property using the determined navigation route.
-
公开(公告)号:US11851041B1
公开(公告)日:2023-12-26
申请号:US15482470
申请日:2017-04-07
Inventor: Leo Nelson Chan , Kristopher Keith Gaudin , Roxane Lyons , William J. Leise , John A. Nepomuceno , Rajiv C. Shah , Edward P. Matesevac, III , Jennifer Criswell Kellett , Steven Cielocha , Jeremy Myers , Matthew S. Megyese , Jennifer L. Crawford
IPC: B60T8/172 , F16H59/66 , B60T8/1755 , G05D1/02 , B60T8/17 , B60W40/06 , B60W50/14 , G01W1/10 , G01N19/02 , G06T7/41
CPC classification number: B60T8/1725 , B60T8/1701 , B60T8/17558 , B60W40/06 , B60W50/14 , F16H59/66 , G01N19/02 , G01W1/10 , G05D1/0223 , G05D1/0246 , G06T7/41 , B60T2210/12 , B60W2555/20 , G06T2207/30252
Abstract: Systems and methods are disclosed for estimating slipperiness of a road surface. This estimate may be obtained using an image sensor mounted on a vehicle. The estimated road slipperiness may be utilized when calculating a risk index for the road, or for an area including the road. If a predetermined threshold for slipperiness is exceeded, corrective actions may be taken. For instance, warnings may be generated to human drivers that are in control of driving vehicle, and autonomous vehicles may automatically adjust vehicle speed based upon road slipperiness detected.
-
公开(公告)号:US20230325936A1
公开(公告)日:2023-10-12
申请号:US18209258
申请日:2023-06-13
Inventor: John A. Nepomuceno , Rajiv C. Shah , Leo Nelson Chan , Steven Cielocha , Roxane Lyons , Matthew S. Megyese , William J. Leise , Jennifer Criswell Kellett , Kristopher Keith Gaudin , Jennifer L. Crawford , Jeremy Myers , Edward P. Matesevac, III
CPC classification number: G06Q40/08 , B60Q9/008 , G05D1/0214 , G05D1/0061 , G01C21/3697 , G05D1/0257 , G01S19/13
Abstract: Systems and methods relate to, inter alia, calculating a collision risk index for an area based upon historical traffic data. The systems and methods may further generate a notification to automatically engage or disengage an autonomous, or semi-autonomous, vehicle control feature in a vehicle based upon the collision risk index for the area. The systems and methods may further transmit the notification to a device of the vehicle to facilitate automatically engaging or disengaging an autonomous, or semi-autonomous, vehicle control feature in the vehicle as the vehicle approaches the area. As a result, vehicle collisions may be reduced, and vehicle safety enhanced.
-
-
-
-
-
-
-
-
-