Abstract:
Bereitgestellt sind: eine Elektrode für eine Energiespeichereinrichtung, die einen reduzierten elektrischen Widerstand aufweist und die eine elektrostatische Kapazität und eine Zellspannung einer Energiespeichereinrichtung verbessern kann und eine gespeicherte Energiedichte verbessern kann, wenn diese als Elektrode für eine Energiespeichereinrichtung verwendet wird; eine Energiespeichereinrichtung, die eine Elektrode für die Energiespeichereinrichtung verwendet; und ein Verfahren zum Herstellen der Elektrode für eine Energiespeichereinrichtung. Die Elektrode für die Energiespeichereinrichtung beinhaltet Kohlenstoff-Nanoröhren, eine ionische Flüssigkeit und einen dreidimensional vernetzten porösen Metallkörper, der mehrere Porenabschnitte aufweist, die mit den Kohlenstoff-Nanoröhren und der ionischen Flüssigkeit gefüllt sind, wobei in den Porenabschnitten, die an einer Oberfläche des dreidimensional vernetzten porösen Metallkörpers freiliegen, der mehreren Porenabschnitte ein Verhältnis (d/D) zwischen einem Porenabschnittsdurchmesser (D) in einer ersten Richtung innerhalb der Oberfläche des dreidimensional vernetzten porösen Metallkörpers und einem Porenabschnittsdurchmesser (d) in einer zweiten Richtung orthogonal zu der ersten Richtung innerhalb der Oberfläche des dreidimensional vernetzten porösen Metallkörpers in einem Bereich von 0
Abstract:
Es wird ein Elektrodenmaterial bereitgestellt, das als Elektrode in einem elektrischen Doppelschichtkondensator, einem Lithium-Ionen-Kondensator und einer Lithiumsekundärbatterie verwendet wird und einen verringerten Innenwiderstand zur Verbesserung der Leistung aufweist. Das Elektrodenmaterial ist dadurch gekennzeichnet, dass ein Metall in die Poren in einem Oberflächenbereich an einer Oberfläche eines Pulver-Formkörpers, der mindestens ein Aktivmaterialpulver enthält, angebracht ist und ein Metallfilm auf der einen Oberfläche gebildet ist. Das Elektrodenmaterial kann gebildet werden, indem eine Plattierungsbehandlung auf dem Pulver-Formkörper durchgeführt wird.
Abstract:
Disclosed is a current collector for a non-aqueous electrolyte battery, which comprises an aluminum porous body having a reduced oxygen content in the surface thereof and can have improved discharge capacity and improved charge-discharge efficiency. The current collector for a non-aqueous electrolyte battery comprises an aluminum porous body, wherein the oxygen content in the surface of the aluminum porous body is 3.1 mass% or less. The aluminum porous body comprises an aluminum alloy containing at least one element selected from the group consisting of Cr, Mn and a transition metal element. The aluminum porous body can be produced by a process which comprises forming an aluminum alloy layer (2) on the surface of a resin (1) of a resin body (1f) that has a communicated hole formed therein and subsequently heating the resin body (i.e., a resin body (3) coated with the aluminum alloy layer) to a temperature equal to or lower than the melting point of the aluminum alloy while immersing the resin body in a molten salt and while applying a potential lower than a standard electrode potential of aluminum to the aluminum alloy layer (2), thereby thermally decomposing the resin body (1f) (the resin (1)).
Abstract:
Disclosed is a molten salt battery case, which can be used for a molten salt battery that contains, as an electrolytic solution, a molten salt containing sodium ions. The case comprises aluminum or an aluminum alloy containing 90 mass% or more of aluminum.
Abstract:
Disclosed are: a method for producing a separator that can be used in a molten salt battery and is not easily damaged; a method for manufacturing a molten salt battery; a separator; and a molten salt battery which comprises the separator. Specifically, a separator (3) of a molten salt battery is configured of a porous resin sheet. The resin sheet is provided with hydrophilicity, so that the separator (3) has improved wettability with respect to a molten salt. If the resin sheet is a fluororesin sheet, C-F bonds in the fluororesin are broken by impregnating the sheet with water and irradiating the sheet with ultraviolet light, so that hydrophilic groups such as OH groups are formed in the surface layer by a reaction of water and the sheet is provided with hydrophilicity due to the hydrophilic groups. Since the separator (3), which is formed of a resin, is not easily damaged, the separator can be formed in the shape of a bag. A molten salt battery that comprises a separator (3) having the shape of a bag is prevented from dendrite growth, and has improved charge/discharge cycle characteristics.
Abstract:
A molten salt battery (1) comprises: an Al case (5) having an almost rectangular parallelepiped shape; and a positive electrode (2) comprising an active material film (22) formed on an Al current collector (21), a separator (3) comprising a glass cloth impregnated with a molten salt that serves as an electrolyte, and a negative electrode (4) comprising a Zn film (42) and an active material film (43) formed on an Al current collector (41), all of which are contained in the Al case (5). In the molten salt battery (1), the active material film (43) contains an active material comprising an Sn-Na alloy, the active material film (22) and the active material film (43) can store and release Na ions from the molten salt and therefore the hardness on the surface side (i.e., the active material side) becomes higher than that of the Na negative electrode upon driving of the battery, the generation of Na dendrites can be prevented, and the capacity of the battery can be increased. Thus, disclosed are: a negative electrode material for a battery; a negative electrode precursor material for a battery; and a battery equipped with a negative electrode comprising the negative electrode material.
Abstract:
Disclosed is a battery (1) which comprises a positive electrode (4), a negative electrode (3) that is mainly composed of sodium, and an electrolyte that is arranged between the positive electrode (4) and the negative electrode (3). The electrolyte is composed of a molten salt that contains anions represented by formula (I) (wherein R1 and R2 each independently represents a fluorine atom or a fluoroalkyl group) and metal cations, and the metal cations contain either at least one kind of alkali metal cations and/or at least one kind of alkaline earth metal cations. Also disclosed is an energy system using the battery (1).
Abstract:
Provided is a solid electrolyte made of yttrium-doped barium zirconate having hydrogen ion conductivity, a doped amount of yttrium being 15 mol% to 20 mol%, and a rate of increase in lattice constant at 100°C to 1000°C with respect to temperature changes being substantially constant. Also provided is a method for manufacturing the solid electrolyte. This solid electrolyte can be formed as a thin film, and a solid electrolyte laminate can be obtained by laminating electrode layers on this solid electrolyte. This solid electrolyte can be applied to an intermediate temperature operating fuel cell.