Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method for performing device-to-device (D2D) communication by an in-coverage user equipment (UE) in a cellular communication system is provided. The method includes receiving a scheduling grant through a downlink control channel from a base station (evolved Node B (eNB)) and transmitting a scheduling assignment (SA) message in an SA region of a D2D communication frame and data in a data region of the D2D communication frame, based on the scheduling grant, wherein the scheduling grant indicates a resource pattern for transmission (RPT) corresponding to a set of resource units or a subset of a resource unit in a time domain and a frequency domain that is used for transmission of the data.
Abstract:
A synchronization method and an apparatus for Device-to-Device (D2D) communication in a User Equipment (UE) are provided. The method includes comparing a reception power of a signal received from an evolved Node B (eNB) with a first reference power, if the reception power is less than the first reference power, generating and transmitting a synchronization signal for D2D communication by operating as a synchronization reference UE, comparing the reception power of a signal received from the eNB with a second reference power, and if the reception power is greater than or equal to the first reference power and less than the second reference power, relaying a synchronization signal received from the eNB by operating as a synchronization relaying UE.
Abstract:
A method device is provided. The method device includes a communication circuit, memory, and one or more processors communicatively coupled to the communication circuit and the memory, wherein the memory store one or more computer programs including computer-executable instructions that, when executed by the one or more processors, cause the network device to use at least one network among a plurality of networks and identify bearers to which frequency resources shared by the plurality of networks should be allocated, determine, on the basis of the identified bearers, the network that is to allocate the frequency resources at the next unit time among the plurality of networks, and allocate at least a portion of the frequency resources to at least a portion of the identified bearers on the basis of the determined network.
Abstract:
A communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT) are provided, which may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. An uplink transmission method is provided, which can increase an uplink coverage through improvement of reception reliability of uplink control information and data information.
Abstract:
A method performed by a first Base Station (BS) in a wireless communication system, includes: receiving second network information of a second BS from the second BS of the wireless communication system, wherein the first BS supports a wireless access scheme that is different from a wireless access scheme of the second BS and shares a same frequency band with the second BS; determining a resource allocation ratio between the first BS and the second BS according to a predefined resource allocation scheme based on first network information of the first BS and the second network information of the second BS; and transmitting information on the resource allocation ratio to the second BS.
Abstract:
The present disclosure relates to a communication technique that combines a 5G communication system for supporting a data rate that is higher than that of a beyond 4G system with IoT technology, and a system thereof. The present disclosure may be applied to intelligent services on the basis of 5G communication technology and IoT related technology, such as smart home, smart building, smart city, smart car or connected car, health care, digital education, retail, security and safety related services. The present disclosure relates to a method and an apparatus for operations of a terminal and a base station to transmit an uplink signal in a communication system, and more particularly, to a method by a base station for generating timing advance information for uplink transmission of a terminal and a reception method by the terminal.
Abstract:
A communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT) are provided, which may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. An uplink transmission method is provided, which can increase an uplink coverage through improvement of reception reliability of uplink control information and data information.
Abstract:
A communication method and system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with a technology for internet of things (IoT) are provided. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method by a terminal for determining frequency resources in a cellular network is provided.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to various embodiments, an apparatus of a user equipment (UE) in a wireless environment comprises at least one transceiver; and at least one processor operably coupled to the at least one transceiver. The at least one transceiver is configured to receive a reference signal configuration comprising information for indicating whether a reference signal of a transmission and reception point (TRP) is transmitted through beam sweeping from the TRP, and receive the reference signal from the TRP based on the received reference signal configuration.
Abstract:
A pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-Generation (4G) communication system, such as long-term evolution (LTE), is disclosed. The system includes an apparatus of a base station. The apparatus may include: at least one transceiver, and at least one processor connected to the at least one transceiver, where the at least one processor is configured to transmit to a terminal, configuration information of reference signals for beam management regarding a transmit (Tx) beam of the BS or a receive (Rx) beam of the terminal, transmit the reference signals to the terminal, and the configuration information comprises information related to a number of repetitions of the reference signals.