Abstract:
A system and method for driving a vibrator in an electronic device, as well as electronic device employing such a system or method, are disclosed. In one example embodiment, the system for driving the vibrator includes an integrated circuit having one or more input terminals, one or more output terminals, a vibrator driver amplifier circuit, and one or more additional circuit components. The system further includes at least one processing portion for providing one or more input signals to the one or more of the input terminals. The system is configurable such that one or more control signals to be provided to the vibrator will include one or more first signals if the vibrator is a first vibrator device of a first type, and one or more second signals if the vibrator is a second vibrator device of a second type different from the first type.
Abstract:
This invention deals with a portable terminal that reduces extraneous tones in a portable terminal in which is mounted an electromagnetic induction actuator that produces voice signals, a buzzer signal or a low frequency vibration. By short-circuiting the terminal fittings of the electromagnetic induction actuator or by connecting them electrically to amplifiers or to a signal generator that produces a constant voltage signal or a constant-frequency signal, the extraneous tone produced by vibration of the mechanical vibration system of the actuator is reduced.
Abstract:
The method of controlling a linear vibration welding apparatus, in accordance with the invention, may comprise the steps of: fastening a first workpiece portion in a fixed position; fastening a second workpiece portion to a reciprocating member; energizing a first single winding magnet with direct current power to create a magnetic field; sensing a location of the reciprocating member with respect to a zero point; and energizing a second magnet when the reciprocating member has crossed the zero point when moving towards the first magnet. The linear vibration welding apparatus in accordance with the invention may comprise: a frame; a flexure array; a first magnet assembly; a second magnet assembly; a digital controller; and direct current amplifiers for powering the magnet assemblies.
Abstract:
This invention deals with a portable terminal that reduces extraneous tones in a portable terminal in which is mounted an electromagnetic induction actuator that produces voice signals, a buzzer signal or a low frequency vibration. By short-circuiting the terminal fittings of the electromagnetic induction actuator or by connecting them electrically to amplifiers or to a signal generator that produces a constant voltage signal or a constant-frequency signal, the extraneous tone produced by vibration of the mechanical vibration system of the actuator is reduced.
Abstract:
An electro-mechanical-audio converter and an electro-mechanical-audio converting device using the same employed in mobile terminals such as mobile phones for generating paging vibration which realizes stable vibration function. The electro-mechanical-audio converter includes a housing (1a), movable part (2), forming a magnetic circuit, mounted on an opening of the housing (1a) through a suspension (3); and a detection coil (11) disposed near the movable part (2) for generating excitation voltage by vibration of the movable part (2). Strong vibration of the movable part (2) during resonance is detected by the detection coil (11) as an excitation voltage, and fed back. Accordingly, the electro-mechanical-audio converter and electro-mechanical-audio converting device using the same having an extremely stable vibration function, even when resonance frequency changes due to environmental changes such as ambient temperature, is made feasible.
Abstract:
A method and system employing a feedback signal indicative of monitored motion of an electro-mechanical acoustic transducer to generate one or both of a control signal for driving the transducer at its natural resonance frequency, and a warning signal indicating that the transducer is not vibrating at a frequency within a selected frequency range. In preferred embodiments, the transducer is a voice coil loudspeaker mounted in or on a vehicle. In other preferred embodiments, the electro-mechanical transducer is driven by an initial electrical pulse followed by a sequence of electrical pulses. A feedback signal indicative of monitored motion of a moving portion of the transducer is generated. Each pulse (following the initial pulse) is applied at a time (determined by the feedback signal) so as to drive the transducer at its actual natural resonance frequency. Some embodiments monitor the peak velocity (rather than displacement) of a driven electro-mechanical transducer, process the monitored peak velocity signal to generate feedback indicative of actual radiated energy from the transducer, and generate from the feedback signal one or both of a control signal for driving the transducer in a desired manner and a warning signal indicating that the transducer has not radiated a selected minimum amount of energy.
Abstract:
An arrangement to controllably vibrate a resiliently supported body including electromagnetic drive means energizable to vibrate the body, means to control the device means, means to detect the actual vibration of the body, the control means including digital signal processing means to produce a control pulse train representing a required phased difference from the detected vibration to control the energization of the drive means with an independently set phase difference from the detected frequency to sustain the vibration of the body.
Abstract:
There is disclosed a constant amplitude controller with feedback control for a vibratory feeder apparatus wherein a controlled rectifier is used to rectify the A.C. line voltage applied to the feeder solenoid and to control the voltage to the feeder solenoid. Triggering of the controlled rectifier is accomplished by a bias control signal which is composed of an A.C. phase shift voltage superpositioned by a variable D.C. bias voltage. Mechanical coupling is provided between the solenoid and a transducer which provides feedback to control logic circuitry. In the control logic circuitry, the signal received from the transducer is compared with a signal received from an operator adjusted potentiometer. In this manner, the desired amplitude of the vibrator apparatus is compared with the actual amplitude of the vibrator apparatus and, if there is a discrepancy, the control logic circuitry modifies the amount of control voltage being transferred by the controlled rectifier.
Abstract:
This disclosure is related to marine seismic sources, for example marine seismic sources known in the art as benders. Some embodiments of this disclosure use Lorentz forces to produce seismic energy. For example, magnets and wire coils may be attached to one or more plates of a marine seismic source, and the Lorentz interaction between them may cause deformation of the plates to produce seismic energy. Such marine seismic sources may be components of a marine seismic survey system, and may be used in a method of marine seismic surveying. Methods of making marine seismic sources are also disclosed.