Abstract:
A resin joined body includes a first portion formed of a thermoplastic resin containing fibers, and a second portion formed of a thermosetting resin cured material containing fibers. The thermosetting resin cured material has a melting temperature lower than a melting temperature of the thermoplastic resin. The first portion is joined to the second portion by welding the thermoplastic resin to the thermosetting resin cured material.
Abstract:
Methods and systems for preparing a binder system are provided. The method can include combining a first resin and a second resin to produce a first binder system. The first binder system can be applied to a first plurality of lignocellulose substrates and at least partially cured to produce a first composite product. The method can also include monitoring one or more process variables. The one or more monitored process variables can be evaluated. An amount of the first resin, the second resin, or both combined with one another can be adjusted in response to the evaluation of the one or more monitored process variables to produce a second binder system.
Abstract:
A fastening component is a molded article of a mixture in which microfibrillated cellulose fibers are dispersed in a thermoplastic resin, wherein the thermoplastic resin has a melting point of between 150 and 200° C., and wherein when the total mass % of the thermoplastic resin and the cellulose fibers is set to be 100 mass %, the mass % of the cellulose fibers included in the mixture is greater than 20 mass % and less than 60 mass %. When the total mass % of the thermoplastic resin and the cellulose fibers is set to be 100%, the mass % of the cellulose fibers included in the mixture is preferably equal to or greater than 30 mass % and equal to or less than 50 mass %.
Abstract:
A cellulose-based natural fiber is added to an injection-molded plastic part, especially a fitting for the interior of a motor vehicle. In this manner, the strength of the part is increased and the fibers do not show on the surface.
Abstract:
The present invention relates to a process for the manufacture of short or discontinuous lignocellulosic fiber in combination with synthetic fiber filled thermoplastic composites, in which the process consists of preferably, defiberization and dispersion of the cellulosic fibers in the thermoplastic matrix, further consolidation and dispersion of the blended thermoplastic composition, further blending of the same with inorganic fibers to get the moldable thermoplastic composition and further injection or compression or compression injection molded under high pressure ranging from 100 tones to 1000 tones and a temperature range from 170 to 210 degree centigrade into composite products. The said composites have a tensile strength of at least 75 MPa and a flexural strength of at least 125 MPa. The invention also relates to the use of the said composites in automotive, aerospace, furniture and other structural applications.
Abstract:
A covering panel has a support plate, made from synthetic plastic material, with a flat and even top surface, a bottom face and pairs of opposite sides provided with complementary profile edges in the form of a male profile edge on one side and a female profile edge on the other, where said male profiled edge can be connected to a female edge of an equal adjacent covering panel, preferably according to a direction that runs perpendicular to said top surface. In their bottom face there are strip-shaped recesses that run according to the direction of extrusion and alternate with a number of support strips, of which at least a part has a width S along that bottom face that complies with 1.5T
Abstract:
A connection between composites with non-compatible properties and a method of preparing of such connections are provided. The composites comprise first and second type fibres, respectively, as well as resin. The connection comprises a transition zone between the composites having a layered structure. The transition zone may optionally comprise a transition member and the transition member may optionally be integrated with one or more of the composites. Examples of non-compatible properties where the present connection will be appreciated are great differences in stiffness, e.g. Young's modulus, or in coefficient of thermal expansion.
Abstract:
A pultrusion machine for forming a laminated composite with a predetermined profile and the product obtained. The apparatus comprises at least two spools for supplying elongated reinforcements. A collator receives the elongated reinforcements and arranges the reinforcements in layered relationship to form a layered elongated bundle. A supply member wets the layered elongated bundle with plastisol to form a wetted elongated bundle. The wetted elongated bundle is transported through a pultrusion die wherein the wetted layered bundle is molded into the predetermined profile. A converting apparatus cures, or converts, the wetted layered bundle into the layered composite. A particularly preferred embodiment is an extrusion comprising a reinforcing material wherein said reinforcing material comprises a fiber reinforced plastisol.
Abstract:
The present invention provides a joining method using a method of laser welding wherein two resin molded bodies can be joined with high welding strength. Specifically, this is a method that joins two thermoplastic resin molded bodies using a method of laser welding; the first resin molded body is a laser light transmissive molded body comprising a thermoplastic resin and cellulose fibers with an α-cellulose content of 80% or more; the second resin molded body is a laser light absorbent molded body containing a thermoplastic resin and a colorant; and the first resin molded body and the second resin molded body are welded by irradiating laser light from the first resin molded body side.
Abstract:
A method of preparing a laminate having increased peel strength and solvent resistance which involves (A) applying an adhesive composition to a surface of a first sheet; (B) exposing the adhesive composition on the surface of the first sheet to incoherent, pulsed ultraviolet radiation from a dielectric barrier discharge excimer lamp; (C) bringing a surface of a second sheet in contact with the adhesive composition-bearing surface of the first article; and (D) allowing the adhesive composition to cure. The incoherent, pulsed ultraviolet radiation has a single narrow wavelength band within the range of from about 260 to about 360 nanometers. The adhesive composition includes from about 94 to about 60 percent by weight of a cycloaliphatic diepoxide, from about 1 to about 10 percent by weight of a cationic photoinitiator, and from about 5 to about 30 percent by weight of a vinyl chloride-vinyl acetate-vinyl alcohol terpolymer, all based on the weight of adhesive composition. The sheets desirably are films and nonwoven webs composed of cellulosic fibers, polyolefin fibers, or a mixture of cellulosic fibers and polyolefin fibers. The method is particularly well suited for the preparation of such laminates as industrial wipers, workwear, medical fabrics, and the like.