Abstract:
The invention relates to a device for the sterilisation of ballast water on ships by means of UV radiation, with a pump line by means of which ballast water can be taken up and discharged, wherein the pump line is passed through by a number of UV-transparent sheath pipes arranged one behind another in the direction of the pump line and in which UV radiators are arranged for the emission of UV radiation into the pump line and sheath pipes arranged one behind another in the circumferential direction of the pump line are offset by an angle a in relation to one another.
Abstract:
UV apparatus comprises a tube (1) of UV transparent material, at least one UV lamp (5) provided externally of the tube so as to emit UV light towards the tube, and a core (3) extending in an axial direction within the tube and configured to create turbulent flow in a liquid passing through the tube. A photocatalyst is provided on at least one surface of the core and is responsive to UV light emitted by the lamp to generate free radicals in liquid passing through the tube.
Abstract:
The invention relates to a UV reactor for performing chemical reactions in a pumpable medium, optionally also a multiphase medium, by means of UV radiation, having a reactor chamber (1) through which the medium can flow in a flow direction (2) from an inlet to an outlet, wherein the reactor chamber (1) is permeated by a plurality of UV-transparent jacket tubes (7; 10 – 15; 10’ - 15) disposed one behind the other in the flow direction, and in which UV radiation sources for emitting UV radiation are disposed in the reactor chamber (1), wherein jacket tubes (7; 10 – 15; 10’ – 15) disposed one behind the other are staggered in the circumferential direction of the reactor chamber (1) by an angle α relative to each other.
Abstract:
Humidifying apparatus includes a body comprising a chamber into which water is supplied by a water tank. An air flow is generated over water stored in the chamber, and a humidifying system humidifies the air flow with water from the chamber. Water in the chamber is irradiated by an ultraviolet radiation emitting lamp. The lamp forms part of a cartridge removably locatable within the body so that the lamp is received within an ultraviolet radiation transparent tube of the chamber. The body includes a plurality of supports for supporting the cartridge therebetween. Each support has a curved track for guiding movement of the cartridge towards the tube, the tracks being shaped to orient the cartridge for insertion of the lamp into the tube as the cartridge moves along the tracks towards the tube.
Abstract:
The present invention relates to a device for supplying cold and hot water having a sterilization function by using UV light, and more specifically, to a device for supplying sterilized cold and hot water which includes a UV sterilization lamp and a see-through window for easily checking the contamination state of the inside of a water tank with the naked eye. The device for supplying sterilized cold and hot water according to one embodiment of the present invention is characterized in that the entire top surface or the entire side surface of the water tank is formed as a see-through window such that the internal state thereof can be checked from the outside.
Abstract:
An ultraviolet irradiation system includes: an ultraviolet irradiation apparatus including a plurality of ultraviolet lamps; a flowmeter configured to measure a flow rate of the water to be treated that passes through the ultraviolet irradiation apparatus; and an ultraviolet-dose monitoring and controlling apparatus configured to monitor an ultraviolet dose of the ultraviolet irradiation apparatus and to control outputs of the ultraviolet lamps. The plurality of ultraviolet lamps include a first ultraviolet lamp and a plurality of second ultraviolet lamps. The ultraviolet irradiation apparatus includes: a first measurement head configured to measure an ultraviolet intensity of the first ultraviolet lamp; and a plurality of second measurement heads configured to respectively measure ultraviolet intensities of the plurality of the ultraviolet lamps. A distance between the first ultraviolet lamp and the first measurement head is set to a determined value.
Abstract:
A light emitting module including a light source configured to irradiate ultraviolet light, a board on which the light source is disposed, a tube accommodating the board and including a transparent region to transmit the ultraviolet light emitted from the light source, a first base coupled to one side of the tube, a second base coupled to the other side of the tube, a fixation groove disposed in the tube and connected to at least one of the first and second bases, in which the board is coupled to be inserted into the fixation groove, and the fixation groove is spaced apart from a center of the first base when viewed in a cross-section perpendicular to a length direction of the tube.
Abstract:
An ultraviolet irradiation apparatus includes: a first substrate; a second substrate; electrodes disposed directly or indirectly on the first substrate; a dielectric layer covering the electrodes; a sealant joining together the first and second substrates; a light-emitting layer that is disposed directly or indirectly on the dielectric layer and/or a surface of the second substrate; and a reaction vessel disposed directly or indirectly on a surface of the second substrate. The reaction vessel includes a tubular structure, an inlet channel and an outlet channel. The tubular structure has a ratio ha/hc of 5 to 10, where ha is a diameter of a circle inscribed in an inner bottom surface of the tubular structure, and hc is an inner height of the tubular structure.
Abstract:
A pool water purifying device includes a rough filtration module having a first housing. A rough filter is received in the first housing. An electrolyzing module includes a second housing. Two electrodes and an ultraviolet lamp are mounted to the second housing and extend into the second housing. The electrodes are electrically connected to a power supply. A fine filtration module includes a third housing receiving a fine filter. A piping unit includes a plurality of pipes and a plurality of valves. The valves connect the first, second, and third housings to intercommunicate the first, second, and third housings with each other. The valves are mounted on the pipes to control communication between the pipes.