Abstract:
To provide a porous polyimide resin film having a high aperture ratio. A method for producing a porous polyimide film comprising removing fine particles from a polyimide resin-fine particle composite film to thereby obtain a porous polyimide resin film, in which the method comprises either removing at least a part of a polyimide resin portion of the polyimide resin-fine particle composite film prior to removing the fine particles, or removing at least a part of the porous polyimide resin film subsequent to removing the fine particles.
Abstract:
Pellets or granules comprise polymeric material, for example polyetheretherketone and a fugitive material, for example sodium chloride. The granules may be used in injection moulding to produce shapes for use in medical implants and may conveniently be used to form parts which are partially porous, or to prepare porous films.
Abstract:
A process for producing a porous film containing a liquid crystal polyester comprising the following steps (a), (b) and (c) in this order: (a) dispersing 1 to 1,500 parts by weight of a filler, based on 100 parts by weight of a liquid crystal polyester, in a solution in which 100 parts by weight of the liquid crystal polyester is dissolved in a solvent to produce a slurry coating liquid; (b) coating the coating liquid on at least one side of a substrate to form a coating film; and (c) removing the solvent from the coating film, immersing the film in a solvent which does not dissolve the liquid crystal polyester, and drying the film to form a porous film containing a liquid crystal polyester.
Abstract:
PROBLEM TO BE SOLVED: To provide a process for producing a porous film with high heat resistance in an easy process at a low cost. SOLUTION: The method for producing a porous film containing liquid-crystalline polyester is characterized by comprising the following steps (a), (b) and (c) in this order. (a) 100 Parts by weight of a liquid-crystalline polyester is dissolved in a solvent and 1 to 1,500 parts by weight of a filler with respect to 100 parts by weight of the liquid-crystalline polyester is dispersed in the solution to prepare a slurry coating fluid. (b) The coating fluid is applied to at least one side of a substrate to form a coating film. (c) The coating film is subjected to solvent removal, immersion in a solvent in which the liquid-crystalline polyester does not dissolve, and drying to thereby obtain a porous film containing the liquid-crystalline polyester. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
The present invention relates to a composite film that is capable of converting mechanical energy to electrical energy. The film comprises a substrate and piezoelectric nanoparticles that are configured to form a plurality of pores. The present film is flexible and highly porous, providing high permittivity and beneficial porosity-mediated mechanical properties. When used in a piezoelectric nanogenerator (PNG), the film provides enlarged bulk film strain and reduced film impedance, resulting in a high efficiency PNG with increased output voltage and current as compared to known PNGs. A method of synthesizing the film is also described. The provided method is simple and cost-effective.
Abstract:
In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to macroporous photonic crystal membranes, structures including macroporous photonic crystal membranes, devices including macroporous photonic crystal membranes, methods of using macroporous photonic crystal membranes, methods of making macroporous photonic crystal membranes, and the like.
Abstract:
A method of making a nanoporous structure comprising a matrix and at least one nanosized pore within the matrix, wherein the method comprises contacting at least a portion of a templated matrix with an acid solution, wherein the templated matrix comprises a matrix that selected from the group consisting of an organic polymer, a sol-based ceramic, an inorganic salt, an organoaluminate, and combinations thereof, and one or more nanosized templates within the matrix, wherein each nanosized template comprises a core that comprises an inorganic oxide, to dissolve at least a portion of the inorganic oxide of at least one of the cores and form the at least one nanosized pore within the matrix thereby forming the nanoporous structure.
Abstract:
A porous polyimide resin film having a high aperture ratio, and a method for producing a porous polyimide film. The method includes removing fine particles from a polyimide resin-fine particle composite film to obtain a porous polyimide resin film by either removing at least a part of a polyimide resin portion of the polyimide resin-fine particle composite film prior to removing the fine particles, or by removing at least a part of the porous polyimide resin film subsequent to removing the fine particles.