Abstract:
The present invention relates to a process for producing pulverulent organic porous materials, comprising (i) the provision of an organic xerogel or organic aerogel and then (ii) the comminution of the material provided in step (i).The invention further relates to the pulverulent organic porous materials thus obtainable, to thermal insulation materials comprising the pulverulent porous organic materials, to building material and vacuum insulation panels comprising the thermal insulation materials, and to the use of the pulverulent organic porous materials or of the thermal insulation materials for thermal insulation.
Abstract:
A method is provided for fabricating a porous elastomer, the method comprising the steps of: providing a predetermined amount of a liquid elastomer and a predetermined amount of a porogen; mixing the liquid elastomer and the porogen in vacuum until a homogenous emulsion without phase separation is formed; curing the homogenous emulsion until polymerizations of the emulsion is reached, thereby forming a cured emulsion; and removing the porogen from the cured emulsion. The method can advantageously be used for forming biocompatible porous elastomers and biocompatible porous membranes.
Abstract:
Provided are porogen compositions and methods of using such porogen compositions in the manufacture of porous materials, for example, porous silicone elastomers. The porogens generally include comprising a core material and shell material different from the core material. The porogens can be used to form a scaffold for making a resulting porous elastomer when the scaffold is removed.
Abstract:
A porous polymeric matrix containing at least one natural polymer and at least one synthetic polymer and optionally at least one cation. Furthermore, a method of making a porous polymeric matrix involving mixing at least one natural polymer and inorganic salts with a solution comprising at least one solvent and at least one synthetic polymer to form a slurry, casting the slurry in a mold and removing the solvent to form solid matrices, immersing the solid matrices in deionized water to allow natural polymer cross-linking and pore creation to occur simultaneously, and drying the matrices to create a porous polymeric matrix; wherein the matrix contains a cation. Also, a method of making a porous polymeric matrix, involving mixing at least one natural polymer in an aqueous solvent and mixing at least one synthetic polymer in an organic solvent, combining the mixtures and casting in a mold, and separately removing said aqueous solvent and said organic solvent to form a porous polymeric matrix; wherein the porous polymeric matrix does not contain a cation.
Abstract:
A process for obtaining an aerogel from a polymeric material that is in the form a sol-gel in an organic solvent, by exchanging the organic solvent for a fluid having a critical temperature below a temperature of polymer decomposition, and supercritically drying the fluid/sol-gel. The process is carried out in a semi-continuous mode that includes the steps of contacting the initial sol-gel with a stream of the fluid at different pressures and temperatures through n+1 pressure vessels A.sub.0 to A.sub.n that each have an inlet for fluid VI.sub.i and an outlet for effluent VO.sub.i wherein the n+1 pressure vessels are operated dependently on each other through a joint fluid supply system and a joint effluent treatment system so that the respective product in each of the pressure vessels A.sub.0 to A.sub.n is submitted to the fluid in successive steps with pressure and temperature following a curve that never cuts the vaporization curve in the pressure-temperature diagram of FIG. 1.
Abstract:
The present invention provides a polyvinyl alcohol powder which comprises a pore having an average diameter of 0.1 to 10 .mu.m in the range of 0.05 to 0.4 cc/g. Since the PVA powder of the present invention has an excellent solubility in water, an aqueous solution thereof can easily be prepared industrially.Since the PVA powder of the present invention has a low content of an organic volatile component and a low content of a nonvolatile component such as a carboxylic acid salt or the like which is derived from a basic catalyst, it has an excellent industrial handleability.
Abstract:
Relatively thin, collapsed, i.e. unexpanded, polymeric foam materials that, upon contact with aqueous body fluids, expand and absorb such fluids, are disclosed. A process for consistently obtaining such relatively thin, collapsed polymeric foam materials by polymerizing a specific type of water-in-oil emulsion, commonly known as High Internal Phase Emulsions or "HIPE", is also disclosed.
Abstract:
Supercritical drying has distinct advantages in generating microcellular materials. The dimensional stability of the polymer is not affected on drying because the supercritical process does not go through the two phase path and therefore the effect of capillary forces is absent. This helps in maintaining the morphology of the final polymer structure and better control over cell size.Organic microcellular foams were prepared by polymerizing directly in a near-critical fluid and pursuing the supercritical drying in the same reactor. The critical variables are the choice of a diluent with a strong enough solvent power to stabilize the polymer matrix, but with a low enough critical temperature to permit critical point drying without damage to the polymer matrix.