Abstract:
Disclosed are:1) a three-component resin composition comprising a hydroxyl group-containing compound (A), an epoxy group-containing compound (B) and a silane group-containing compound (C);2) a two-component resin composition comprising a hydroxyl group-containing compound (A) and silane group- and epoxy group-containing compound (D);3) a two component resin composition comprising hydroxyl group- and silane group-containing compound (E) and epoxy group-containing compound (B); and4) two-component resin composition comprising hydroxyl group- and epoxy group-containing compound (F) and silane group-containing compound (C); wherein at least one of the components in each of the resin compositions 1) to 4) is (are) fluorine-containing resin;5) a curable composition comprising one of the resin compositions 1) to 4) and a metal chelate compound as curing catalyst; and6) coating compositions comprising such curing composition and when required a pigment.
Abstract:
A fluorinated ether compound is represented by formula: [X23-n2R23n2Si—R22—]3C-R21—[N(R2)C(O)]p2—(Rf2O)m2-Q2-[C(O)N(R2)]p2—R21—C[—R22—SiR23-n2X23-n2]3. Rf2 is a fluoroalkylene group having no branched structure, Q2 is a fluoroalkylene group having no branched structure, R2 is a hydrogen atom or an alkyl group, R21 is a single bond, an alkylene group, an alkylene group comprising an etheric oxygen atom at its terminal on the side bonded to [X23-n2R23n2Si—R22—]3C, an alkylene group with at least two carbon atoms comprising an etheric oxygen atom between its carbon-carbon atoms, or an alkylene group with at least two carbon atoms comprising an etheric oxygen atom between its carbon-carbon atoms and at its terminal on the side bonded to [X23-n2R23n2Si—R22—]3C, R22 is an alkylene group, or the like, R23 is a hydrogen atom or a monovalent hydrocarbon group, and X2 is a hydrolyzable group.
Abstract:
The present invention provides a stain-proof coating composition including silica fine particles (A), a nonionic surfactant (B), and a nonionic surfactant (C), wherein the nonionic surfactant (B) is at least one kind of nonionic surfactant (B) selected from the group consisting of an acetylenediol-based surfactant (b-1) and a polyoxyalkylene alkyl ether-based surfactant (b-2), the nonionic surfactant (C) is at least one kind of nonionic surfactant (C) selected from the group consisting of a vinyl-based polymeric surfactant (c-1) and a polyoxyalkylene fatty acid ester-based surfactant (c-2).
Abstract:
A manufacturing method for a heat-dissipating coating includes steps as: a) providing a gluey liquid mixed by a first solution and a compound substance at a weight ratio of 1:0.6 to 1:1.4; the compound substance is selected from a group consisting of fluorocarbon resin, fluororesin, acrylic acid resin, polyurethane, polyurea resin, unsaturated polyester, epoxide, and mixtures thereof; b) providing a filler material mixed by a second solution and a filler substance at a weight ratio of 1:0.3 to 1:0.8 and another weight ratio of the compound substance to the filler substance being 1:0.1 to 1:0.6; the filler substance is selected from a group consisting of bamboo charcoal, carbon nanotube, graphite, graphene platelets, graphene, carbon spheres, carbon fibers, BN, AlN, mica, SiO2, TiO2, SiC, ZnO, GeO2, and mixtures thereof; c) mixing the gluey liquid and the filler material to produce a heat-dissipating material, so as to form a heat-dissipating coating.
Abstract:
A surface coating material is provided for forming a hydrophilic oil repellent layer on at least a part of the surface of a substrate, and the surface coating material includes one or more fluorine-based compounds represented by the following formulas (1) to (4), a binder, and a solvent.
Abstract:
A nonionic surfactant composition including: a nonionic surfactant that contains a molecule having a C10-C22 alkyl group and/or alkenyl group as a hydrophobic group, a polyoxyalkylene chain as a hydrophilic group, no aromatic ring, no C9-C14 alkyl group derived from an alcohol that is produced from a higher olefin derived from a mixture of propylene and butene through an oxo process, and no C13 alkyl group derived from an alcohol that is produced from a higher olefin derived from a propylene tetramer through an oxo process. The nonionic surfactant has a hydrodynamic radius of 5.0 to 8.0 nm at 40° C. in an aqueous solution in which a nonionic surfactant concentration is 0.1 kg/L in the nonionic surfactant composition, the radius being measured by a dynamic light scattering method.
Abstract:
To provide a process for producing a powder coating material capable of forming a cured film which is excellent in weather resistance and which has few voids (gaps); a coated article having such a cured film; and a method for producing a carboxy group-containing fluororesin less susceptible to gelation. A process for producing a powder coating material containing a powder (X) composed of a composition (a) comprising a fluororesin (A) having carboxy groups, or alkoxysilyl groups and urethane bonds, and a curing agent (D), said process comprising (a) a step of melt-kneading a mixture comprising a hydroxy group-containing fluororesin (B), an acid anhydride (C1) or a compound (C2) having an alkoxysilyl group and an isocyanate group, and the curing agent (D), to obtain a kneaded product composed of the composition (α), and (b) a step of pulverizing the kneaded product to obtain the powder (X).
Abstract:
A nonionic surfactant composition including: a nonionic surfactant that contains a molecule having a C10-C22 alkyl group and/or alkenyl group as a hydrophobic group, a polyoxyalkylene chain as a hydrophilic group, no aromatic ring, no C9-C14 alkyl group derived from an alcohol that is produced from a higher olefin derived from a mixture of propylene and butene through an oxo process, and no C13 alkyl group derived from an alcohol that is produced from a higher olefin derived from a propylene tetramer through an oxo process. The nonionic surfactant has a hydrodynamic radius of 5.0 to 8.0 nm at 40° C. in an aqueous solution in which a nonionic surfactant concentration is 0.1 kg/L in the nonionic surfactant composition, the radius being measured by a dynamic light scattering method.
Abstract:
An atomizer having an antifouling structure and an electronic cigarette having the same are disclosed. The atomizer includes a device housing and an atomizing unit disposed inside the device housing. The device housing defines therein a liquid storage chamber configured for storing tobacco liquid. The atomizing unit is configured for atomizing the tobacco liquid to produce an aerosol. The device housing further includes an aerosol channel in communication with the atomizing unit and is configured for expelling the aerosol. The antifouling structure mainly includes a hydrophobic oleophobic surface or super oleophobic surface formed on an inner wall of a member forming the aerosol channel or the liquid storage chamber. The antifouling structure prevents condensed droplets from accumulating and adhering to the inner wall of the aerosol channel or the liquid storage chamber, thereby avoiding users inhaling the condensed droplets into their mouths when smoking next time.
Abstract:
A coating material composition include a hydroxyl group-containing acrylic resin, a fluororesin, and light diffusive particles, and the hydroxyl group-containing acrylic resin has a weight-average molecular weight in a range of 10,000 to 30,000 and a hydroxyl value in a range of 14 to 70, wherein a mass ratio of the fluororesin to the hydroxyl group-containing acrylic resin (the fluororesin/the hydroxyl group-containing acrylic resin) is in a range of 5/95 to 50/50. The coating material composition can provide the light diffusing properties capable of uniformly diffusing light while effectively masking a light source image.