Abstract:
A hot-melt adhesive composition comprises a blend of at least one acidic polymer and at least one basic polymer. At least one of the polymers is a hot-melt adhesive. Thermally reversible crosslinks are formed between each of the two polymers. These crosslinks impart cohesive strength to the applied adhesive, without sacrificing ease of processing.
Abstract:
A printing ink composition for laminate contains a pigment, a binder resin, a polyfunctional isocyanate compound as curing agent, and an organic solvent, wherein the binder resin is a polyurethane resin and a vinyl chloride-vinyl acetate copolymer; at least one of the polyurethane resin and vinyl chloride-vinyl acetate copolymer has a reactive group that can react with the isocyanate group in the polyfunctional isocyanate compound; the ratio of the solid content of the polyurethane resin and that of the vinyl chloride-vinyl acetate copolymer is in a range of 9/1 to 1/9 (polyurethane resin/vinyl chloride-vinyl acetate copolymer); and the ratio of the sum of the solid contents of the polyurethane resin and vinyl chloride-vinyl acetate copolymer and the solid content of the curing agent is in a range of 1:0.2 to 0.9 ((polyurethane resin+copolymer):curing agent).
Abstract:
The present invention relates to a self-adhesive article comprising a support layer of foam or similar type and an adhesive layer obtained by cross-linking an adhesive composition. The present invention also relates to a mixture of at least two polymers suitable for use for the manufacture of the self-adhesive article as well as an adhesive composition comprising said mixture of at least two polymers according to the invention.
Abstract:
Biomimetic adhesive compositions can be used in various aspects of subterranean treatment operations. Methods for treating a subterranean formation can comprise: providing an adhesive composition that comprises a first polymer comprising a plurality of monomers that comprise a phenolic moiety, a biopolymer that is crosslinkable with the first polymer, a crosslinking agent, and an oxidizing agent; introducing the adhesive composition into a subterranean formation; and forming a coacervate-bound surface in the subterranean formation by crosslinking the first polymer.
Abstract:
The present invention relates to a self-adhesive article comprising a support layer of foam or similar type and an adhesive layer obtained by cross-linking an adhesive composition. The present invention also relates to a mixture of at least two polymers suitable for use for the manufacture of the self-adhesive article as well as an adhesive composition comprising said mixture of at least two polymers according to the invention.
Abstract:
Triazabutadiene molecules that provide adhesive functionality, e.g., triazabutadiene molecules as underwater adhesives or water-reactive adhesives. The triazabutadiene molecules mask an aryl diazonium ion, a highly reactive chemical functionality. Once unmasked, e.g., in water, the diazonium species is adapted to react with an electron rich aryl ring that can undergo diazonium chemistry (e.g., phenol species, resorcinol species, etc.). Triazabutadienes can be used as additives in adhesive systems such as but not limited to epoxy adhesive systems.
Abstract:
A laminating adhesive is prepared from a water-borne resin obtained by allowing an isocyanate group-terminated prepolymer having an anionic group to react with a chain extender; a swellable inorganic layer compound; and a water dispersible polyisocyanate curing agent.
Abstract:
Synthesis methods for creating polymeric compounds comprising dihydroxyphenyl derivatives (DHPD), or DHPp i.e. polymers modified with DHPD, with desired surface active effects are described. The polymer backbone of DHPp has structural or performance features that can be tailored to control physical properties of DHPp, allowing it to be useful for different applications i.e. tissue adhesives or sealants, adhesion promoting coatings, and antifouling coatings.
Abstract:
What is disclosed is a water-based adhesive composition that is an aqueous dispersion or emulsion of a polymer component having functional groups that are inactive in a reversible manner in the adhesive composition as prepared; and a water-soluble, or water emulsion, or dispersion of a cross linker component having functional groups wherein the functional groups are inactive in a reversible manner in the adhesive composition as prepared. Preferably the adhesive composition has a pH of from 7 to 11 and a volatile stabilizing base component is used to inactivate the functional groups and to provide the pH. The functional groups in the polymer component and the cross linker component are activated when the volatile base is removed during lamination heat treatment. The adhesive composition can be used to adhere a variety of plastic films to metal substrates without reliance on non-water-based adhesives.
Abstract:
Synthesis methods for creating polymeric compounds comprising dihydroxyphenyl derivatives (DHPD), or DHPp i.e. polymers modified with DHPD, with desired surface active effects are described. The polymer backbone of DHPp has structural or performance features that can be tailored to control physical properties of DHPp, allowing it to be useful for different applications i.e. tissue adhesives or sealants, adhesion promoting coatings, and antifouling coatings.