Abstract:
A chemical change agent containing water, tall oil, glycerides, and surfactants is used to create synthetic fuels. An alternate composition contains water, glycerides, and surfactants. The chemical change agent is formed by heating the tall oil; combining water, fatty acids, and surfactant; and adding the heated tall oil and the water, fatty acid, and surfactant to form an emulsion. The synthetic fuel contains coal and the chemical change agent. The synthetic fuel is formed by mixing coal with the chemical change agent and pressing the two components into a briquette or other suitable treatment to create a finished product.
Abstract:
Combustible compositions in the form of homogeneous water-in-oil and/or organic emulsions, deriving from heterogeneous fatty waste and containing solid particles in suspension are prepared by carrying out a dynamic homogenisation operation and an emulsification operation in the presence of an emulsifying agent and/or a base such as an alkali or alkaline-earth metal hydroxide. These combustible compositions can be used for combustion in a variety of furnace types.
Abstract:
A fuel composition comprising less than about 10 percent-by-weight water, greater than about 30 percent-by-weight solids and from about 30 to about 70 percent-by-weight of a combustible nonaqueous, generally water insoluble liquid, the composition having a minimum heat value of at least 5000 BTU per pound and a viscosity such that said composition is pumpable at ambient temperature, the composition being conveniently derived, for example, from a waste stream containing a liquid, nonaqueous fraction, a solids fraction and an aqueous fraction, such as refinery waste, waste from aluminum smelting processes, paint waste or other industries.
Abstract:
Slurries of water-saturated coal and liquid hydrocarbon carriers having the properties of low apparent viscosity, controlled sedimentation and easy separation, which properties render the slurries transportable over long distances in conventional oil pipelines to predetermined destinations where they are easily separated into their constituent parts, are prepared by combining coal with a liquid hydrocarbon carrier, a minor amount of water in excess of the amount in the water-saturated coal and, optionally, a surfactant to form a mixture and then agitating the mixture under high shear conditions to form agglomerated coal particles in which water acts as a coordinator bridging layer around and/or among the agglomerated particles.
Abstract:
The invention relates to stable brown-coal/oil suspensions and a process for preparing same. The suspension contains 20 to 60% by mass of coal powder and 40 to 80% by mass of fuel oil of 25 to 70% by mass of an agglomerate and 30 to 75% by mass of fuel oil.The invention renders possible to utilize brown-coal powders of low value for heating purposes.
Abstract:
This invention relates to a mixed fuel comprising a coal powder or the like and heavy oil obtained by adding and mixing a dilute aqueous solution of a water-soluble high-molecular compound and a carbonaceous solid fuel powder such as coal powder or the like (hereinafter referred to as "coal powder and the like") to heavy oil so as to disperse the coal powder and the like and water (in very fine particle state) in heavy oil and being suitable as fuel for boilers, various furnaces, internal combustion engines, and the like.
Abstract:
An aqueous phase continuous, fuel slurry is claimed, and its method of production from agglomerates consisting essentially of carbonaceous particles, agglomerating oil and residual water. The slurry may be formed by thoroughly mixing with agglomerates an agglomerate dispersing and coal/oil/water system interfacial tension reducing agent with the agglomerates so that the agglomerates are broken down and an aqueous phase continuous fuel slurry is formed containing residual, oil produced flocs from the agglomerates and having an oil content of the fuel slurry no greater than 10 weight % of the solids content of the fuel slurry. The solids content of the fuel slurry is in the range of the order of 50 weight % and of the order of 80 weight % of the total weight of the fuel slurry, and is preferably in the range of the order of 65 weight % to of the order of 70 weight %. Examples of interfacial tension reducing agents are ethanol, methanol, glycol, butyl alcohol, isopropyl alcohol, lauryl sulfonates, alkyl sulfonates, lignosulfonates, sodium oleate, nonyl-phenolethoxylates, and soaps. With fuel slurries according to the invention, there may be very slow sedimentary consolidation of the carbonaceous particles, but when it does occur there is no difficulty in re-mixing the constituents into a slurry because the residual aggregates or flocs cause the carbonaceous particles to pack down to a porous bed.
Abstract:
A mixed fuel comprising powdered coal, oil, water, and a dispersion stabilizer is described. The dispersion stabilizer is comprised of water-insoluble fine particles having a colloid-forming ability. More specifically, the stabilizer is comprised of (1) a water-insoluble natural polymeric compound, (2) a water-insoluble polymeric compound prepared by a chemical treatment or dissolution and regeneration of a natural polymeric compound, (3) a water-insoluble synthetic polymeric compound, or (4) a water-insoluble inorganic hydroxide or oxide, or graphite. This mixed fuel has good fluidity and storage stability.
Abstract:
A coal slurry containing 10-60% solids by weight is optionally first coarsely ground to about 20-80 mesh. Contaminant matter released thereby, may be separated by conventional means such as froth flotation which would eliminate a large proportion of the ash which is energy consuming as well as abrasive in nature. The "clean slurry" would now have water added back and would be further ground to about 100-300 mesh particle size and would then be cavitated by sonic energy making the particle size even smaller and freeing any remaining contaminants including iron pyrites and ash. To this, a mixture of oil is added and the coal, oil mixture is then sonified during which process spherical agglomeration of the coal and oil occurs. The agglomerate and water mixture is screened to separate out most of the water leaving behind about 10-40% water in the coal, during which process the contaminants are also discharged with the water. The spherical agglomerates are mixed with a balance of oil to about 0.6 times the weight of the coal to produce a stable thixatropic fuel with excellent pipe travel characteristics due to a migration of a thin film of water to the boundry layer between the bore of the pipe and the fuel. The process including the sonification steps is also useful generally in the separation of solids by agglomeration.