Abstract:
A biphasic nanoporous vitreous carbon material with a cementitious morphology characterized by presence of non-round porosity, having superior hardness and tribological properties, as useful for high wear-force applications. The biphasic nanoporous vitreous carbon material is produced by firing, under inert atmosphere, of particulate vitrified carbon in a composition containing (i) a precursor resin that is curable and pyrolyzable to form vitreous carbon and, optionally, (ii) addition of one or more of the following: solid lubricant, such as graphite, boron nitride, or molybdenum disulfide; a heat-resistant fiber reinforcement, such as copper, bronze, iron alloy, graphite, alumina, silica, or silicon carbide; or one or more substances to improve electrical conductivity, such as dendritic copper powder, copper "felt" or graphite flake, to produce a superior vitreous carbon that is useful alone or as a continuous phase in reinforced composites, in relation to conventional glassy carbon materials.
Abstract:
A solid lubricant additive for resin-bound friction lining mixtures is characterised in that it contains a combination of copper-I-sulphide (Cu2S) with at least another sulphide of molybdenum, zinc, antimony, wolfram, tin and/or titanium.
Abstract:
A resin composition for sliding parts which comprises 5-45 vol. % of carbon fiber, 1-25 vol. % of metallic powder and the balance consisting of melt-processable fluororesin. The composition gives a molding having a low coefficient of friction which little varies at high temperatures and a wear resistance against soft metals.
Abstract:
An oil-well metal pipe according to the present disclosure has a pipe main body including a first end portion and a second end portion. The pipe main body includes a pin formed at the first end portion, and a box formed at the second end portion. The pin includes a pin contact surface including an external thread part, and the box includes a box contact surface including an internal thread part. The oil-well metal pipe according to the present disclosure also includes a resin coating containing a resin, a solid lubricant powder, and copper phthalocyanine on or above at least one of the pin contact surface and the box contact surface.
Abstract:
The present invention relates to a low-friction member imitating shark skin and a manufacturing method therefor, the low-friction member implementing a structure similar to shark skin and having riblets by stacking, in layers, composite particles formed by attaching spherical particles on the surfaces of plate-shaped particles, and thus the low-friction member has excellent low-friction characteristics. The present invention comprises: a base plate; plate-shaped particles stacked in layers on the surface of the base plate in the form of scales; and a plurality of spherical metal lubricating particles having a size smaller than that of the plate-shaped particles, and coated on the surfaces of the plate-shaped particles, wherein the metal lubricating particles are arranged in the form of a bridge connecting the base plate and the plate-shaped particles, and the plate-shaped particles to each other.
Abstract:
A self-lubricating solid composite coating configured for an application to timepiece mechanisms, including particles of graphene and/or graphene oxide distributed in a metal matrix.
Abstract:
A cleaning blade lubricant including an acicular shape lubricant is provided. The cleaning blade lubricant is applied to a cleaning blade of an electrophotographic printing device for improving the cleaning performance of a cleaning blade of an electrophotographic printing device.
Abstract:
A coated body includes a body (1) with a body surface (3) and a coating system (20) deposited on at least a portion of the body surface (3). The coating system (20) includes at least one hard friction reducing coating deposited as an outermost layer (9) which exhibits droplets (10) at its surface. The outermost layer (9) includes molybdenum copper nitride and/or molybdenum nitride and copper nitride, and at least some of the droplets (10) consist mainly of copper. Preferably most of the largest droplets (10) consist mainly of copper.